Marco Ziccardi, E. Mezzetti, T. Vardanega, J. Abella, F. Cazorla
{"title":"EPC: Extended Path Coverage for Measurement-Based Probabilistic Timing Analysis","authors":"Marco Ziccardi, E. Mezzetti, T. Vardanega, J. Abella, F. Cazorla","doi":"10.1109/RTSS.2015.39","DOIUrl":null,"url":null,"abstract":"Measurement-based probabilistic timing analysis (MBPTA) computes trustworthy upper bounds to the execution time of software programs. MBPTA has the connotation, typical of measurement-based techniques, that the bounds computed with it only relate to what is observed in actual program traversals, which may not include the effective worst-case phenomena. To overcome this limitation, we propose Extended Path Coverage (EPC), a novel technique that allows extending the representativeness of the bounds computed by MBPTA. We make the observation data probabilistically path-independent by modifying the probability distribution of the observed timing behaviour so as to negatively compensate for any benefits that a basic block may draw from a path leading to it. This enables the derivation of trustworthy upper bounds to the probabilistic execution time of all paths in the program, even when the user-provided input vectors do not exercise the worst-case path. Our results confirm that using MBPTA with EPC produces fully trustworthy upper bounds with competitively small overestimation in comparison to state-of-the-art MBPTA techniques.","PeriodicalId":239882,"journal":{"name":"2015 IEEE Real-Time Systems Symposium","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2015.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Measurement-based probabilistic timing analysis (MBPTA) computes trustworthy upper bounds to the execution time of software programs. MBPTA has the connotation, typical of measurement-based techniques, that the bounds computed with it only relate to what is observed in actual program traversals, which may not include the effective worst-case phenomena. To overcome this limitation, we propose Extended Path Coverage (EPC), a novel technique that allows extending the representativeness of the bounds computed by MBPTA. We make the observation data probabilistically path-independent by modifying the probability distribution of the observed timing behaviour so as to negatively compensate for any benefits that a basic block may draw from a path leading to it. This enables the derivation of trustworthy upper bounds to the probabilistic execution time of all paths in the program, even when the user-provided input vectors do not exercise the worst-case path. Our results confirm that using MBPTA with EPC produces fully trustworthy upper bounds with competitively small overestimation in comparison to state-of-the-art MBPTA techniques.