Melanoma Cancer Classification Using ResNet with Data Augmentation

Arief Budhiman, S. Suyanto, A. Arifianto
{"title":"Melanoma Cancer Classification Using ResNet with Data Augmentation","authors":"Arief Budhiman, S. Suyanto, A. Arifianto","doi":"10.1109/ISRITI48646.2019.9034624","DOIUrl":null,"url":null,"abstract":"Melanoma skin cancer is cancer that difficult to detect. In this study, have been done melanoma cancer classification using Convolutional Neural Network (CNN). CNN is a class of Deep Neural Network (Deep Learning) and commonly used to analyzing images data. A lot of data used on CNN can greatly affect accuracy. In this study, the objective is to get best ResNet model for classifying melanoma cancer and normal skin images. The dataset that used is ISIC 2018. ResNet is used because the model winning the ILSVRC competition at 2015. ResNet architecture model that used are ResNet 50, 40, 25, 10 and 7 models. The architecture trained using data train that has been augmented and undersampling. The validation result on each model calculated using F1 Score. After validation and F1 Score result from the model obtained, the result compared each other to select the best model. The best architecture is ResNet 50 without augmentation that gives a validation accuracy of 0.83 and f1 score of 0.46.","PeriodicalId":367363,"journal":{"name":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI48646.2019.9034624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Melanoma skin cancer is cancer that difficult to detect. In this study, have been done melanoma cancer classification using Convolutional Neural Network (CNN). CNN is a class of Deep Neural Network (Deep Learning) and commonly used to analyzing images data. A lot of data used on CNN can greatly affect accuracy. In this study, the objective is to get best ResNet model for classifying melanoma cancer and normal skin images. The dataset that used is ISIC 2018. ResNet is used because the model winning the ILSVRC competition at 2015. ResNet architecture model that used are ResNet 50, 40, 25, 10 and 7 models. The architecture trained using data train that has been augmented and undersampling. The validation result on each model calculated using F1 Score. After validation and F1 Score result from the model obtained, the result compared each other to select the best model. The best architecture is ResNet 50 without augmentation that gives a validation accuracy of 0.83 and f1 score of 0.46.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用ResNet和数据增强进行黑色素瘤癌症分类
黑色素瘤皮肤癌是一种难以发现的癌症。在本研究中,利用卷积神经网络(CNN)对黑色素瘤进行了癌症分类。CNN是深度神经网络(Deep Neural Network, Deep Learning)的一类,通常用于分析图像数据。CNN上使用的大量数据会极大地影响准确性。本研究的目的是获得最佳的ResNet模型用于黑色素瘤癌和正常皮肤图像的分类。使用的数据集是ISIC 2018。使用ResNet是因为该模型在2015年的ILSVRC竞赛中获胜。使用的ResNet架构模型有ResNet 50、40、25、10和7模型。该体系结构使用增强和欠采样的数据训练。使用F1 Score计算的每个模型的验证结果。验证后与模型得到的F1评分结果进行比较,选择最优模型。最好的体系结构是没有增强的ResNet 50,它的验证精度为0.83,f1分数为0.46。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TrendiTex: An Intelligent Fashion Designer Pair Extraction of Aspect and Implicit Opinion Word based on its Co-occurrence in Corpus of Bahasa Indonesia Parameter Tuning of G-mapping SLAM (Simultaneous Localization and Mapping) on Mobile Robot with Laser-Range Finder 360° Sensor ISRITI 2019 Committees Network Architecture Design of Indonesia Research and Education Network (IDREN)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1