Golden Model-Free Hardware Trojan Detection by Classification of Netlist Module Graphs

Alexander Hepp, Johanna Baehr, G. Sigl
{"title":"Golden Model-Free Hardware Trojan Detection by Classification of Netlist Module Graphs","authors":"Alexander Hepp, Johanna Baehr, G. Sigl","doi":"10.23919/DATE54114.2022.9774760","DOIUrl":null,"url":null,"abstract":"In a world where increasingly complex integrated circuits are manufactured in supply chains across the globe, hardware Trojans are an omnipresent threat. State-of-the-art methods for Trojan detection often require a golden model of the device under test. Other methods that operate on the netlist without a golden model cannot handle complex designs and operate on Trojan-specific sets of netlist graph features. In this work, we propose a novel machine-learning-based method for hardware Trojan detection. Our method first uses a library of known malicious and benign modules in hierarchical designs to train an eXtreme Gradient Boosted Tree Classifier (XGBClassifier). For training, we generate netlist graphs of each hierarchical module and calculate feature vectors comprising structural characteristics of these graphs. After the training phase, we can analyze the synthesized hierarchical modules of an unknown design under test. The method calculates a feature vector for each module. With this feature vector, each module can be classified into either benign or malicious by the previously trained XGBClassifier. After classifying all modules, we derive a classification for all standard cells in the design under test. This technique allows the identification of hardware Trojan cells in a design and highlights regions of interest to direct further reverse engineering efforts. Experiments show that this approach performs with >97 % Sensitivity and Specificity across available and newly generated hardware Trojan benchmarks and can be applied to more complex designs than previous netlist-based methods while maintaining similar computational complexity.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In a world where increasingly complex integrated circuits are manufactured in supply chains across the globe, hardware Trojans are an omnipresent threat. State-of-the-art methods for Trojan detection often require a golden model of the device under test. Other methods that operate on the netlist without a golden model cannot handle complex designs and operate on Trojan-specific sets of netlist graph features. In this work, we propose a novel machine-learning-based method for hardware Trojan detection. Our method first uses a library of known malicious and benign modules in hierarchical designs to train an eXtreme Gradient Boosted Tree Classifier (XGBClassifier). For training, we generate netlist graphs of each hierarchical module and calculate feature vectors comprising structural characteristics of these graphs. After the training phase, we can analyze the synthesized hierarchical modules of an unknown design under test. The method calculates a feature vector for each module. With this feature vector, each module can be classified into either benign or malicious by the previously trained XGBClassifier. After classifying all modules, we derive a classification for all standard cells in the design under test. This technique allows the identification of hardware Trojan cells in a design and highlights regions of interest to direct further reverse engineering efforts. Experiments show that this approach performs with >97 % Sensitivity and Specificity across available and newly generated hardware Trojan benchmarks and can be applied to more complex designs than previous netlist-based methods while maintaining similar computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于网表模块图分类的金无模型硬件木马检测
在一个越来越复杂的集成电路在全球供应链中制造的世界里,硬件木马是一个无处不在的威胁。最先进的特洛伊木马检测方法通常需要被测设备的黄金模型。在没有黄金模型的情况下在网表上操作的其他方法不能处理复杂的设计,也不能在特洛伊木马特定的网表图形特征集上操作。在这项工作中,我们提出了一种新的基于机器学习的硬件木马检测方法。我们的方法首先使用分层设计中已知的恶意和良性模块库来训练极端梯度增强树分类器(XGBClassifier)。对于训练,我们生成每个层次模块的网表图,并计算包含这些图的结构特征的特征向量。经过训练阶段,我们可以对未知设计的综合层次模块进行分析。该方法计算每个模块的特征向量。有了这个特征向量,每个模块都可以通过之前训练的XGBClassifier分类为良性或恶意。在对所有模块进行分类之后,我们推导出测试设计中所有标准单元的分类。该技术允许在设计中识别硬件木马单元,并突出显示感兴趣的区域,以指导进一步的逆向工程工作。实验表明,该方法在可用的和新生成的硬件木马基准测试中具有bb0 97%的灵敏度和特异性,并且可以应用于比以前基于netlist的方法更复杂的设计,同时保持相似的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIET: A Dynamic Energy Management Approach for Wearable Health Monitoring Devices NPU-Accelerated Imitation Learning for Thermal- and QoS-Aware Optimization of Heterogeneous Multi-Cores A Precision-Scalable Energy-Efficient Bit-Split-and-Combination Vector Systolic Accelerator for NAS-Optimized DNNs on Edge coxHE: A software-hardware co-design framework for FPGA acceleration of homomorphic computation HELCFL: High-Efficiency and Low-Cost Federated Learning in Heterogeneous Mobile-Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1