Poster: Sentiment Analysis of BGM Toward Automatic BGM Selection Based on Emotion

N. A. Konan, H. Suwa, Yutaka Arakawa, K. Yasumoto
{"title":"Poster: Sentiment Analysis of BGM Toward Automatic BGM Selection Based on Emotion","authors":"N. A. Konan, H. Suwa, Yutaka Arakawa, K. Yasumoto","doi":"10.1145/2938559.2948770","DOIUrl":null,"url":null,"abstract":"It is essential to select/assign appropriate background mu- sic (BGM) for each scene/cut when we edit a video or a slideshow of photos. However, it is a laborious task. Aim- ing to realise automatic BGM selection/assignment, we pro- pose a method to automatically assign emotion tag to various BGM. To realise this method, we need a model for classify- ing BGM. To build our model, we use a set of movie scene BGMs that a group of 14 users tagged with five (5) differ- ent sentiments: Love, Surprise, Joy, Sadness, and Fear. Af- ter confirming their agreements, we extracted the features of each audio file of our dataset. Using the machine-learning tool WEKA and the random forest algorithm, we built a model. Through a cross validation process, we evaluated our model and obtained an accuracy of 94% in prediction of the emotion in the BGM, demonstrating the effectiveness of the proposed approach.","PeriodicalId":298684,"journal":{"name":"MobiSys '16 Companion","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MobiSys '16 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2938559.2948770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is essential to select/assign appropriate background mu- sic (BGM) for each scene/cut when we edit a video or a slideshow of photos. However, it is a laborious task. Aim- ing to realise automatic BGM selection/assignment, we pro- pose a method to automatically assign emotion tag to various BGM. To realise this method, we need a model for classify- ing BGM. To build our model, we use a set of movie scene BGMs that a group of 14 users tagged with five (5) differ- ent sentiments: Love, Surprise, Joy, Sadness, and Fear. Af- ter confirming their agreements, we extracted the features of each audio file of our dataset. Using the machine-learning tool WEKA and the random forest algorithm, we built a model. Through a cross validation process, we evaluated our model and obtained an accuracy of 94% in prediction of the emotion in the BGM, demonstrating the effectiveness of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海报:基于情感的BGM自动选择的情感分析
当我们编辑视频或照片幻灯片时,为每个场景/剪辑选择/分配合适的背景音乐(BGM)是至关重要的。然而,这是一项艰巨的任务。为了实现BGM的自动选择/分配,我们提出了一种为各种BGM自动分配情感标签的方法。为了实现这种方法,我们需要一个对BGM进行分类的模型。为了构建我们的模型,我们使用了一组电影场景bgm,其中14个用户被标记为五(5)种不同的情绪:爱、惊喜、喜悦、悲伤和恐惧。在确认他们的协议后,我们提取了我们数据集的每个音频文件的特征。使用机器学习工具WEKA和随机森林算法,我们建立了一个模型。通过交叉验证过程,我们评估了我们的模型,并获得了94%的准确率来预测BGM中的情绪,证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Demo: Profiling Power Utilization Behaviours of Smartwatch Applications Poster: Index Structure for Spatial Keyword Query with Myanmar Language on the Mobile Devices Poster: Software Architecture for Efficiently Designing Cloud Applications using Node.js Poster: Discovery of Disappeared Node in Large Number of BLE Devices Environment Poster: Deep Learning Enabled M2M Gateway for Network Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1