FM signal parameter estimation using the Hilbert Huang transform

Hao Chen, Jun-hai Guo, Tong Liu
{"title":"FM signal parameter estimation using the Hilbert Huang transform","authors":"Hao Chen, Jun-hai Guo, Tong Liu","doi":"10.1109/CISP.2013.6743863","DOIUrl":null,"url":null,"abstract":"Combining EMD (Empirical mode decomposition) based denoising methods with mode decomposition methods, new robust FM (frequency modulation) signal parameter estimation methods are proposed. The original signal is firstly denoised with EMD based denoising method, HHT (Hilbert Huang transform) based FM signal parameter estimation method is then used on the denoised signal. Simulations show that the EMD based denoising method largely increases signal's SNR and does no harm to the mode decomposition, making the FM parameter estimation method more robust to noise, and the application in radar target estimation proves the usefulness of this method.","PeriodicalId":442320,"journal":{"name":"2013 6th International Congress on Image and Signal Processing (CISP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2013.6743863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Combining EMD (Empirical mode decomposition) based denoising methods with mode decomposition methods, new robust FM (frequency modulation) signal parameter estimation methods are proposed. The original signal is firstly denoised with EMD based denoising method, HHT (Hilbert Huang transform) based FM signal parameter estimation method is then used on the denoised signal. Simulations show that the EMD based denoising method largely increases signal's SNR and does no harm to the mode decomposition, making the FM parameter estimation method more robust to noise, and the application in radar target estimation proves the usefulness of this method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用希尔伯特黄变换估计调频信号参数
将基于经验模态分解(EMD)的去噪方法与模态分解方法相结合,提出了新的鲁棒调频信号参数估计方法。首先采用基于EMD的去噪方法对原始信号进行去噪,然后采用基于HHT (Hilbert Huang transform)的调频信号参数估计方法对去噪后的信号进行估计。仿真结果表明,基于EMD的去噪方法大大提高了信号的信噪比,且对模态分解没有损害,使调频参数估计方法对噪声具有更强的鲁棒性,并在雷达目标估计中的应用证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic risk assesment for driver response in passing over obstacles A novel image fusion rule based on Structure Similarity indices A double total variation regularized model of Retinex theory based on nonlocal differential operators An optimized weighted multi-frequency subspace migration for imaging perfectly conducting, arc-like cracks A randomized circle detection method with application to detection of circular traffic signs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1