Evaluation of the Medium-sized Neural Network using Approximative Computations on Zynq FPGA

M. Skrbek, P. Kubalík, Martin Kohlík, Jaroslav Borecký, Robert Hülle
{"title":"Evaluation of the Medium-sized Neural Network using Approximative Computations on Zynq FPGA","authors":"M. Skrbek, P. Kubalík, Martin Kohlík, Jaroslav Borecký, Robert Hülle","doi":"10.1109/MECO58584.2023.10155065","DOIUrl":null,"url":null,"abstract":"Integrating artificial intelligence technologies into embedded systems requires efficient implementation of neural networks in hardware. The paper presents a Zynq 7020 FPGA implementation and evaluation of a middle-sized dense neural network based on approximate computation by linearly approximated functions. Three famous benchmarks were used for classification accuracy evaluation and hardware testing. We use our highly pipelined neural hardware architecture that takes weights from block RAMs to save logic resources and enables their update from the processing system. The architecture reaches excellent design scalability, allowing us to estimate the number of neurons implemented in programmable logic based on single-neuron resources. We reached nearly full chip utilization while preserving the high clock freuuency for the FPGA used.","PeriodicalId":187825,"journal":{"name":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","volume":"363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO58584.2023.10155065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating artificial intelligence technologies into embedded systems requires efficient implementation of neural networks in hardware. The paper presents a Zynq 7020 FPGA implementation and evaluation of a middle-sized dense neural network based on approximate computation by linearly approximated functions. Three famous benchmarks were used for classification accuracy evaluation and hardware testing. We use our highly pipelined neural hardware architecture that takes weights from block RAMs to save logic resources and enables their update from the processing system. The architecture reaches excellent design scalability, allowing us to estimate the number of neurons implemented in programmable logic based on single-neuron resources. We reached nearly full chip utilization while preserving the high clock freuuency for the FPGA used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Zynq FPGA的中型神经网络近似计算评估
将人工智能技术集成到嵌入式系统中需要在硬件上有效地实现神经网络。本文介绍了一种基于线性逼近函数近似计算的中型密集神经网络的FPGA实现和评估。使用三个著名的基准进行分类精度评估和硬件测试。我们使用高度流水线化的神经硬件架构,从块ram中获取权重,以节省逻辑资源,并使其能够从处理系统中更新。该架构具有出色的设计可扩展性,使我们能够估计基于单个神经元资源的可编程逻辑中实现的神经元数量。我们达到了几乎完全的芯片利用率,同时保留了所用FPGA的高时钟频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Blockchain Platforms for Generation and Verification of Diplomas Minimizing the Total Completion Time of Jobs for a Permutation Flow-Shop System Double Buffered Angular Speed Measurement Method for Self-Calibration of Magnetoresistive Sensors Quantum Resilient Public Key Cryptography in Internet of Things Crop yield forecasting with climate data using PCA and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1