AR DeepCalorieCam V2: food calorie estimation with CNN and AR-based actual size estimation

Ryosuke Tanno, Takumi Ege, Keiji Yanai
{"title":"AR DeepCalorieCam V2: food calorie estimation with CNN and AR-based actual size estimation","authors":"Ryosuke Tanno, Takumi Ege, Keiji Yanai","doi":"10.1145/3281505.3281580","DOIUrl":null,"url":null,"abstract":"In most of the cases, the estimated calories are just associated with the estimated food categories, or the relative size compared to the standard size of each food category which are usually provided by a user manually. In addition, in the case of calorie estimation based on the amount of meal, a user conventionally needs to register a size-known reference object in advance and to take a food photo with the registered reference object. In this demo, we propose a new approach for food calorie estimation with CNN and Augmented Reality (AR)-based actual size estimation. By using Apple ARKit framework, we can measure the actual size of the meal area by acquiring the coordinates on the real world as a three-dimensional vector, we implemented this demo app. As a result, it is possible to calculate the size more accurately than in the previous method by measuring the meal area directly, the calorie estimation accuracy has improved.","PeriodicalId":138249,"journal":{"name":"Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3281505.3281580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In most of the cases, the estimated calories are just associated with the estimated food categories, or the relative size compared to the standard size of each food category which are usually provided by a user manually. In addition, in the case of calorie estimation based on the amount of meal, a user conventionally needs to register a size-known reference object in advance and to take a food photo with the registered reference object. In this demo, we propose a new approach for food calorie estimation with CNN and Augmented Reality (AR)-based actual size estimation. By using Apple ARKit framework, we can measure the actual size of the meal area by acquiring the coordinates on the real world as a three-dimensional vector, we implemented this demo app. As a result, it is possible to calculate the size more accurately than in the previous method by measuring the meal area directly, the calorie estimation accuracy has improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AR DeepCalorieCam V2:使用CNN和基于AR的实际尺寸估计进行食物卡路里估计
在大多数情况下,估计的卡路里只是与估计的食物类别相关联,或者与每种食物类别的标准尺寸相比较,这些通常是由用户手动提供的。此外,在基于餐量估算卡路里的情况下,用户通常需要提前注册一个已知大小的参考对象,并使用注册的参考对象拍摄食物照片。在这个演示中,我们提出了一种基于CNN和增强现实(AR)的食物卡路里估计的新方法。通过使用Apple ARKit框架,我们可以通过获取现实世界上的坐标作为三维矢量来测量用餐区域的实际大小,我们实现了这个演示应用程序。因此,可以比之前直接测量用餐区域的方法更准确地计算出大小,提高了卡路里估算的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XRCreator Indoor AR navigation using tilesets "Virtual ability simulation" to boost rehabilitation exercise performance and confidence for people with disability BoatAR An evaluation of smartphone-based interaction in AR for constrained object manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1