Toward an efficient brain tumor extraction using level set method and pennes bioheat equation

Abdelmajid Bousselham, O. Bouattane, M. Youssfi, A. Raihani
{"title":"Toward an efficient brain tumor extraction using level set method and pennes bioheat equation","authors":"Abdelmajid Bousselham, O. Bouattane, M. Youssfi, A. Raihani","doi":"10.1109/CIST.2016.7804989","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to present a new approach for improving deformable models and especially the Level Set Method (LSM) for segmentation and extraction of brain tumors in MRI (Magnetic Resonance Imaging) with more accuracy, the contribution of this work is to exploit thermal behavior of brain tumors for correcting level set contours. Human Body temperature distribution is an indicator of health condition, the brain tumor cells generate more heat than normal brain cells due to their higher metabolism and their vascular dilation. Heat distribution in human body is modeled using Pennes BioHeat Transfer Equation (PBHTE) solved by Finite Volume Method (FVM), and with the inverse analysis using Genetic Algorithm (GA) we will estimate the size and location of brain tumor, with this way Level Set Method extracts tumors contours with more accuracy and efficiency. To our knowledge, this is the first approach which introduces thermal analysis to improve the accuracy of segmentation and extraction of tumors in MRI images.","PeriodicalId":196827,"journal":{"name":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th IEEE International Colloquium on Information Science and Technology (CiSt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIST.2016.7804989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this paper is to present a new approach for improving deformable models and especially the Level Set Method (LSM) for segmentation and extraction of brain tumors in MRI (Magnetic Resonance Imaging) with more accuracy, the contribution of this work is to exploit thermal behavior of brain tumors for correcting level set contours. Human Body temperature distribution is an indicator of health condition, the brain tumor cells generate more heat than normal brain cells due to their higher metabolism and their vascular dilation. Heat distribution in human body is modeled using Pennes BioHeat Transfer Equation (PBHTE) solved by Finite Volume Method (FVM), and with the inverse analysis using Genetic Algorithm (GA) we will estimate the size and location of brain tumor, with this way Level Set Method extracts tumors contours with more accuracy and efficiency. To our knowledge, this is the first approach which introduces thermal analysis to improve the accuracy of segmentation and extraction of tumors in MRI images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用水平集法和pennes生物热方程对脑肿瘤进行高效提取
本文的目的是提出一种改进可变形模型的新方法,特别是水平集方法(LSM),以提高MRI(磁共振成像)中脑肿瘤的分割和提取的准确性,这项工作的贡献是利用脑肿瘤的热行为来校正水平集轮廓。人体温度分布是健康状况的一个指标,脑肿瘤细胞比正常脑细胞产生更多的热量,因为它们的新陈代谢更快,血管扩张。利用有限体积法(FVM)求解Pennes生物传热方程(phbhte)建立人体热量分布模型,利用遗传算法(GA)进行逆分析,估计出脑肿瘤的大小和位置,从而使水平集法更准确、更高效地提取肿瘤轮廓。据我们所知,这是第一个引入热分析来提高MRI图像中肿瘤分割和提取精度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantically enhanced term frequency based on word embeddings for Arabic information retrieval Automatic generation of TestNG tests cases from UML sequence diagrams in Scrum process Coordination by sharing demand forecasts in a supply chain using game theoretic approach Robust approach for textured image clustering High speed efficient FPGA implementation of pipelined AES S-Box
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1