Dropout Prediction System to Enhance Massive Open Online Courses

A. Nazif, Ahmed Ahmed Hesham Sedky, O. Badawy
{"title":"Dropout Prediction System to Enhance Massive Open Online Courses","authors":"A. Nazif, Ahmed Ahmed Hesham Sedky, O. Badawy","doi":"10.1109/ICCTA54562.2021.9916604","DOIUrl":null,"url":null,"abstract":"Statistics have shown a growth rate of 120% from 2019 to the end of 2020 in MOOCs Courses around the world. This research proposes a new methodology in predicting student result in MOOCs modules. Since dropouts and failure rates of MOOCs’ students is a well noticed problem, the proposed methodology contributed a new model that uses various feature selection algorithms and Probabilistic Neural Network (PNN) classification algorithm. Results showed that using certain feature selection algorithms in combination with PNN resulted in enhancing trend exploration and prediction.","PeriodicalId":258950,"journal":{"name":"2021 31st International Conference on Computer Theory and Applications (ICCTA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 31st International Conference on Computer Theory and Applications (ICCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA54562.2021.9916604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Statistics have shown a growth rate of 120% from 2019 to the end of 2020 in MOOCs Courses around the world. This research proposes a new methodology in predicting student result in MOOCs modules. Since dropouts and failure rates of MOOCs’ students is a well noticed problem, the proposed methodology contributed a new model that uses various feature selection algorithms and Probabilistic Neural Network (PNN) classification algorithm. Results showed that using certain feature selection algorithms in combination with PNN resulted in enhancing trend exploration and prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于辍学预测系统的大规模网络开放课程
统计数据显示,从2019年到2020年底,全球mooc课程的增长率为120%。本研究提出了一种预测mooc模块学生成绩的新方法。由于mooc学生的辍学率和不合格率是一个备受关注的问题,本文提出的方法提供了一个使用各种特征选择算法和概率神经网络(PNN)分类算法的新模型。结果表明,将一定的特征选择算法与PNN相结合,可以增强趋势探索和预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Laser Odometry for Agricultural Environment Based on Point Cloud Intensity and Covariance Tuberculosis Detection from Chest Radiographs with Pre-trained Deep Learning Scheme: A Study Keynote Speech 3: Collaboration of Cloud, Fog and Mist Computing for Real-Time Applications: Resource Allocation and Scheduling Challenges Chaotic Maps Based Video Encryption: A New Approach Arabic Language Sentiment Analysis Using Feature Engineering and Deep Learning RNN-LSTM Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1