KHyperLogLog: Estimating Reidentifiability and Joinability of Large Data at Scale

Pern Hui Chia, Damien Desfontaines, Irippuge Milinda Perera, Daniel Simmons-Marengo, Chao Li, Wei-Yen Day, Qiushi Wang, Miguel Guevara
{"title":"KHyperLogLog: Estimating Reidentifiability and Joinability of Large Data at Scale","authors":"Pern Hui Chia, Damien Desfontaines, Irippuge Milinda Perera, Daniel Simmons-Marengo, Chao Li, Wei-Yen Day, Qiushi Wang, Miguel Guevara","doi":"10.1109/SP.2019.00046","DOIUrl":null,"url":null,"abstract":"Understanding the privacy relevant characteristics of data sets, such as reidentifiability and joinability, is crucial for data governance, yet can be difficult for large data sets. While computing the data characteristics by brute force is straightforward, the scale of systems and data collected by large organizations demands an efficient approach. We present KHyperLogLog (KHLL), an algorithm based on approximate counting techniques that can estimate the reidentifiability and joinability risks of very large databases using linear runtime and minimal memory. KHLL enables one to measure reidentifiability of data quantitatively, rather than based on expert judgement or manual reviews. Meanwhile, joinability analysis using KHLL helps ensure the separation of pseudonymous and identified data sets. We describe how organizations can use KHLL to improve protection of user privacy. The efficiency of KHLL allows one to schedule periodic analyses that detect any deviations from the expected risks over time as a regression test for privacy. We validate the performance and accuracy of KHLL through experiments using proprietary and publicly available data sets.","PeriodicalId":272713,"journal":{"name":"2019 IEEE Symposium on Security and Privacy (SP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP.2019.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Understanding the privacy relevant characteristics of data sets, such as reidentifiability and joinability, is crucial for data governance, yet can be difficult for large data sets. While computing the data characteristics by brute force is straightforward, the scale of systems and data collected by large organizations demands an efficient approach. We present KHyperLogLog (KHLL), an algorithm based on approximate counting techniques that can estimate the reidentifiability and joinability risks of very large databases using linear runtime and minimal memory. KHLL enables one to measure reidentifiability of data quantitatively, rather than based on expert judgement or manual reviews. Meanwhile, joinability analysis using KHLL helps ensure the separation of pseudonymous and identified data sets. We describe how organizations can use KHLL to improve protection of user privacy. The efficiency of KHLL allows one to schedule periodic analyses that detect any deviations from the expected risks over time as a regression test for privacy. We validate the performance and accuracy of KHLL through experiments using proprietary and publicly available data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KHyperLogLog:估计大规模大数据的可识别性和可接合性
了解数据集的隐私相关特征(如可识别性和可连接性)对于数据治理至关重要,但对于大型数据集来说可能很困难。虽然通过蛮力计算数据特征很简单,但大型组织收集的系统和数据的规模需要一种有效的方法。我们提出了KHyperLogLog (KHLL),这是一种基于近似计数技术的算法,可以使用线性运行时和最小内存来估计超大型数据库的可识别性和可连接性风险。KHLL使人们能够定量地衡量数据的可识别性,而不是基于专家判断或人工审查。同时,使用KHLL的可接合性分析有助于确保假名数据集和已识别数据集的分离。我们描述了组织如何使用KHLL来改进用户隐私保护。KHLL的效率允许安排定期分析,以检测随着时间的推移与预期风险的任何偏差,作为隐私的回归测试。我们通过使用专有和公开数据集的实验验证了KHLL的性能和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 9 Lives of Bleichenbacher's CAT: New Cache ATtacks on TLS Implementations CaSym: Cache Aware Symbolic Execution for Side Channel Detection and Mitigation PrivKV: Key-Value Data Collection with Local Differential Privacy Postcards from the Post-HTTP World: Amplification of HTTPS Vulnerabilities in the Web Ecosystem New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1