Design and analysis of tooth abutment implant

S. Awasthi, V. Singh
{"title":"Design and analysis of tooth abutment implant","authors":"S. Awasthi, V. Singh","doi":"10.4103/jdi.jdi_8_19","DOIUrl":null,"url":null,"abstract":"In human being, tooth loss is a common problem which may be due to various disease and trauma. Dental implants are used to provide support for the replacement of missing teeth. Research on dental implant designs, materials, and techniques is continuously increasing. There is still a lot of work involved in the use of better biomaterials, implant design, surface modification, and functionalization of surfaces to improve the long-term benefits of implant treatment. This paper provides a brief history of dental implants and its parts. This describes the new designs and conventional design of tooth abutment implant and stress distribution using finite element analysis method on the surface of the whole system under various loading conditions. It describes the suitable materials and its properties which can be used for making tooth abutment implant. This also describes how to remove complexities which is associated with tooth abutment implants such as its motion, complex design of screw, and high cost. Background: The attempts to overcome the problem of tooth loss and to find out a way of replacing missing teeth date back to as old as the history of human beings. Many materials, many geometric forms, surgical and prosthetic methods have been tried till now for the dental implants. Scarcely existing archeological reports demonstrate the attempts of different prosthetic devices used as natural and functional replacements. It is found that transplantation procedures and devices are used by Egyptians, Greeks, Romans, Chinese, Indians and Arabs. Furthermore naive artificial units such as shaped stone, wood, cast iron and carved sea shells, bone and natural teeth taken from various animals and even teeth sold by the poor or slaves have been tried as implantation material. A tooth shaped piece of shell is found by an archeologists which is placed into the socket of missing teeth of a women in 1931. Later, in 1970, a Brazilian dental academic, Amadeo Bobbio, investigated that mandibular specimen and in the radiographs he took, he observed bone formation around the implant-like structures. In 18th century, humans donated their teeth in exchange for some fee but human's body precluded the adaptation of foreign materials. Le Mayeur implanted one hundred and seventy donated teeth in 1785 and 1786 but he was not able to get successful results. In 19th century, predicating on a false assumption that precious materials would be well tolerated by biological tissues, gold, silver, platinum and some other metal alloys were used as implant materials, which resulted in extremely poor long-term results. The human's body reject these type of material basically because they were not inert. Venable et al. (1937) found that the metals that are not inert they tend to ionize when they come into contact with body resulting in producing metallic salts causing excessive proliferation of some tissues whereas inhibiting bone formation. The prevention of bone formation around the implant leads to failure of the implantation. The modern breakthroughs in dental implantology emerged as a result of so-called serendipity of a Swedish orthopedic surgeon, Dr. Branemark, in 1952. While studying bone healing and regeneration around 'the rabbit ear chamber', which was a chamber of titanium designed and developed as a part of research conducted in Cambridge University, he observed in microscopic level that bone had grown around titanium surface in so close proximity that he was unable remove the chamber form the rabbit femur. Dr. Branemark investigated this phenomenon through further studies on animal and volunteer human tissues, which all contributed to unveiling the biocompatible properties of titanium. Having initially been considered to be appropriate for applications in the field of orthopedics such as knee or hip surgery, later titanium is realized to be utilized as anchorage for dental prosthesis and artificial crowns. The first titanium implant was inserted into the jawbone of a human volunteer, Gosta Larsson, for providing an artificial root for prosthetic teeth. Also, in 1967, Leonard Linkow presented his blade-form titanium implants providing mechanical stability and function for partial and complete dentures. In 1970 to 1980 many experimental studies were carried out to obtain better designs and geometric forms for titanium dental implants some of which are the IMZ Implants, TPS Implants, ITI Hollow-Cylinder Implants. Throughout this period, Dr. Branemark continued his research and in 1971 he introduced titanium hollow screw implants which resulted in increased success rate, clinical applicability and reduced rate of complications compared to blade-form implants. In 1978, he established a commercial partnership with a Swedish defense company, Bofors AB. In 1981, based on the partnership, Nobel Biocare, one of the largest current dental implant producers in the world, was founded with the aim of focusing directly on dental implantology. In the year 1982, the Toronto Conference on osseointegration in Clinical Dentistry set the first guidelines for successful implant dentistry. The successful integration of hollow screw geometry into bone and high biocompatible characteristics of titanium resulted in that screw form dental implants have become the preferred method of tooth replacement and a standard dental treatment technique. Providing a high rate of success and a wide range of restorative options, today, dental implants, under various brand names, are extensively used worldwide. Current studies are mainly focused on improving aesthetics, reducing healing period and simplifying the use of dental implants. Objectives: Based on the previous work it was observed that the current dental implant suffers from several shortcomings. In order to minimize these shortcomings several objectives are as follows-. 1. Make a novel design of tooth abutment implant without using screw because the manufacturing process of screw of small part is difficult and costly. 2. Model the new improved tooth abutment implant and subject it to working load. 3. Model the implant considering cost minimization of tooth abutment implant. 4. Analyze and validate the results of stress analysis. Materials and Methods: Here Titanium alloy is used for making new designs because it has better biocompatibility, bonding strength, high corrosion resistance and it prevents to fracture. Solidworks software is used for modeling and ANSYS software is used for analysis. Results: Von-Mises stress distribution is calculated under normal load and maximum load on the top surface of the abutment of conventional design and new designs. Conclusions: After comparing the stress distribution of all the new designs with conventional design and ultimate strength of titanium alloy found the best design of tooth abutment implant.","PeriodicalId":212982,"journal":{"name":"Journal of Dental Implants","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Implants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jdi.jdi_8_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In human being, tooth loss is a common problem which may be due to various disease and trauma. Dental implants are used to provide support for the replacement of missing teeth. Research on dental implant designs, materials, and techniques is continuously increasing. There is still a lot of work involved in the use of better biomaterials, implant design, surface modification, and functionalization of surfaces to improve the long-term benefits of implant treatment. This paper provides a brief history of dental implants and its parts. This describes the new designs and conventional design of tooth abutment implant and stress distribution using finite element analysis method on the surface of the whole system under various loading conditions. It describes the suitable materials and its properties which can be used for making tooth abutment implant. This also describes how to remove complexities which is associated with tooth abutment implants such as its motion, complex design of screw, and high cost. Background: The attempts to overcome the problem of tooth loss and to find out a way of replacing missing teeth date back to as old as the history of human beings. Many materials, many geometric forms, surgical and prosthetic methods have been tried till now for the dental implants. Scarcely existing archeological reports demonstrate the attempts of different prosthetic devices used as natural and functional replacements. It is found that transplantation procedures and devices are used by Egyptians, Greeks, Romans, Chinese, Indians and Arabs. Furthermore naive artificial units such as shaped stone, wood, cast iron and carved sea shells, bone and natural teeth taken from various animals and even teeth sold by the poor or slaves have been tried as implantation material. A tooth shaped piece of shell is found by an archeologists which is placed into the socket of missing teeth of a women in 1931. Later, in 1970, a Brazilian dental academic, Amadeo Bobbio, investigated that mandibular specimen and in the radiographs he took, he observed bone formation around the implant-like structures. In 18th century, humans donated their teeth in exchange for some fee but human's body precluded the adaptation of foreign materials. Le Mayeur implanted one hundred and seventy donated teeth in 1785 and 1786 but he was not able to get successful results. In 19th century, predicating on a false assumption that precious materials would be well tolerated by biological tissues, gold, silver, platinum and some other metal alloys were used as implant materials, which resulted in extremely poor long-term results. The human's body reject these type of material basically because they were not inert. Venable et al. (1937) found that the metals that are not inert they tend to ionize when they come into contact with body resulting in producing metallic salts causing excessive proliferation of some tissues whereas inhibiting bone formation. The prevention of bone formation around the implant leads to failure of the implantation. The modern breakthroughs in dental implantology emerged as a result of so-called serendipity of a Swedish orthopedic surgeon, Dr. Branemark, in 1952. While studying bone healing and regeneration around 'the rabbit ear chamber', which was a chamber of titanium designed and developed as a part of research conducted in Cambridge University, he observed in microscopic level that bone had grown around titanium surface in so close proximity that he was unable remove the chamber form the rabbit femur. Dr. Branemark investigated this phenomenon through further studies on animal and volunteer human tissues, which all contributed to unveiling the biocompatible properties of titanium. Having initially been considered to be appropriate for applications in the field of orthopedics such as knee or hip surgery, later titanium is realized to be utilized as anchorage for dental prosthesis and artificial crowns. The first titanium implant was inserted into the jawbone of a human volunteer, Gosta Larsson, for providing an artificial root for prosthetic teeth. Also, in 1967, Leonard Linkow presented his blade-form titanium implants providing mechanical stability and function for partial and complete dentures. In 1970 to 1980 many experimental studies were carried out to obtain better designs and geometric forms for titanium dental implants some of which are the IMZ Implants, TPS Implants, ITI Hollow-Cylinder Implants. Throughout this period, Dr. Branemark continued his research and in 1971 he introduced titanium hollow screw implants which resulted in increased success rate, clinical applicability and reduced rate of complications compared to blade-form implants. In 1978, he established a commercial partnership with a Swedish defense company, Bofors AB. In 1981, based on the partnership, Nobel Biocare, one of the largest current dental implant producers in the world, was founded with the aim of focusing directly on dental implantology. In the year 1982, the Toronto Conference on osseointegration in Clinical Dentistry set the first guidelines for successful implant dentistry. The successful integration of hollow screw geometry into bone and high biocompatible characteristics of titanium resulted in that screw form dental implants have become the preferred method of tooth replacement and a standard dental treatment technique. Providing a high rate of success and a wide range of restorative options, today, dental implants, under various brand names, are extensively used worldwide. Current studies are mainly focused on improving aesthetics, reducing healing period and simplifying the use of dental implants. Objectives: Based on the previous work it was observed that the current dental implant suffers from several shortcomings. In order to minimize these shortcomings several objectives are as follows-. 1. Make a novel design of tooth abutment implant without using screw because the manufacturing process of screw of small part is difficult and costly. 2. Model the new improved tooth abutment implant and subject it to working load. 3. Model the implant considering cost minimization of tooth abutment implant. 4. Analyze and validate the results of stress analysis. Materials and Methods: Here Titanium alloy is used for making new designs because it has better biocompatibility, bonding strength, high corrosion resistance and it prevents to fracture. Solidworks software is used for modeling and ANSYS software is used for analysis. Results: Von-Mises stress distribution is calculated under normal load and maximum load on the top surface of the abutment of conventional design and new designs. Conclusions: After comparing the stress distribution of all the new designs with conventional design and ultimate strength of titanium alloy found the best design of tooth abutment implant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基牙种植体的设计与分析
1982年,临床牙科骨整合多伦多会议为成功种植牙科制定了第一个指南。由于空心螺钉的几何形状与骨的成功结合以及钛的高生物相容性,螺钉式种植体已成为牙齿替代的首选方法和标准的牙科治疗技术。牙种植体具有很高的成功率和广泛的修复选择,今天,各种品牌的牙种植体在世界范围内广泛使用。目前的研究主要集中在改善美观、缩短愈合时间和简化种植体的使用上。目的:根据以往的工作,观察到目前的种植体存在几个缺点。为了尽量减少这些缺点,有几个目标如下。1. 针对小部件螺钉制造困难且成本高的问题,提出一种不使用螺钉的新型牙基种植体设计。2. 对改良后的牙基种植体进行建模,并对其进行工作载荷测试。3.考虑成本最小化的牙基种植体模型。4. 分析并验证应力分析结果。材料和方法:由于钛合金具有更好的生物相容性、结合强度、高耐腐蚀性和防止断裂,因此在这里使用钛合金进行新设计。采用Solidworks软件进行建模,ANSYS软件进行分析。结果:计算了常规设计和新设计桥台顶面法向荷载和最大荷载作用下的Von-Mises应力分布。结论:通过对所有新型设计与传统设计的应力分布及钛合金的极限强度进行比较,找到了最佳的基牙种植体设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Piezo osteotomy with all-on-4 implants to enable a full-arch rehabilitation A comparative evaluation of bite pressure between single implant prosthesis and natural teeth: An in-vivo study Two implant-retained mandibular overdenture using locator attachment – A clinical report Systemic medications and implant success: Is there a link? Part three: The effects of antiresorptive and anti-angiogenic agents on the outcome of implant therapy Gender-based predilection for the microbial load of Aggregatibacter actinomycetemcomitans present in anterior versus posterior implant sites: A preliminary observational study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1