A Novel Residual Carrier Frequency Offset Estimation Approach for LoRa Systems

Pengxin Guan, Hongkang Yu, Hongfei Zhu, Yuping Zhao
{"title":"A Novel Residual Carrier Frequency Offset Estimation Approach for LoRa Systems","authors":"Pengxin Guan, Hongkang Yu, Hongfei Zhu, Yuping Zhao","doi":"10.1109/ICCCS49078.2020.9118416","DOIUrl":null,"url":null,"abstract":"Long Range (LoRa) technology is gaining considerable academic and commercial traction because of its potential for low power consumption, long transmission distance and wide coverage. In this paper, we focus on the effect of residual carrier frequency offset (RCFO) on LoRa systems, and fill in the blank of efficient estimation and compensation algorithm. We first provide mathematically description of the LoRa signal with RCFO and derive the modulus of the correlation function between the RCFO precompensated upchirp in preamble and the local upchirp. Then, we propose an efficient RCFO estimation algorithm based on the Golden Section Search. The simulation results show that compared with the traditional method, our method achieves higher accuracy of the RCFO estimation and restore the Bit Error Rate (BER) to an acceptable level after compensation.","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Long Range (LoRa) technology is gaining considerable academic and commercial traction because of its potential for low power consumption, long transmission distance and wide coverage. In this paper, we focus on the effect of residual carrier frequency offset (RCFO) on LoRa systems, and fill in the blank of efficient estimation and compensation algorithm. We first provide mathematically description of the LoRa signal with RCFO and derive the modulus of the correlation function between the RCFO precompensated upchirp in preamble and the local upchirp. Then, we propose an efficient RCFO estimation algorithm based on the Golden Section Search. The simulation results show that compared with the traditional method, our method achieves higher accuracy of the RCFO estimation and restore the Bit Error Rate (BER) to an acceptable level after compensation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的LoRa系统剩余载波频偏估计方法
远程(LoRa)技术由于其低功耗、长距离传输和广泛覆盖的潜力,正在获得相当大的学术和商业吸引力。本文主要研究了剩余载波频偏(RCFO)对LoRa系统的影响,填补了有效估计和补偿算法的空白。我们首先给出了带有RCFO的LoRa信号的数学描述,并推导了前导中RCFO预补偿的上啁啾与局部上啁啾之间的相关函数的模量。然后,我们提出了一种基于黄金分割搜索的高效RCFO估计算法。仿真结果表明,与传统方法相比,该方法可以获得更高的RCFO估计精度,并在补偿后将误码率(BER)恢复到可接受的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Resource Dynamic Recombination and Its Technology Development of Space TT&C Equipment Automatic Arousal Detection Using Multi-model Deep Neural Network Internet Traffic Categories Demand Prediction to Support Dynamic QoS Research on Scatter Imaging Method for Electromagnetic Field Inverse Problem Based on Sparse Constraints Usage Intention of Internet of Vehicles Based on CAB Model: The Moderating Effect of Reference Groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1