A Target Localization Algorithm Based on Sequential Compressed Sensing for Internet of Vehicles

Xiuqin Li, Tianjing Wang, Guangwei Bai, Xinjie Guan
{"title":"A Target Localization Algorithm Based on Sequential Compressed Sensing for Internet of Vehicles","authors":"Xiuqin Li, Tianjing Wang, Guangwei Bai, Xinjie Guan","doi":"10.1109/ISC2.2018.8656987","DOIUrl":null,"url":null,"abstract":"The grid-based target localization for internet of vehicle has the property of sparsity, which can be transformed to a sparse recovery problem due to compressive sensing. The accurate target localization relies on the sufficient measurements, but we cannot determine the number of measurements without knowing the number of targets. In this poster, we propose a novel target localization algorithm based on sequential compressed sensing to select the optimal number of measurements and estimate target locations via lp-norm (0<p<1) minimization. The experimental results show that our proposed algorithm has better localization performance than localization via l0 -norm or l1 -norm minimization.","PeriodicalId":344652,"journal":{"name":"2018 IEEE International Smart Cities Conference (ISC2)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Smart Cities Conference (ISC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISC2.2018.8656987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The grid-based target localization for internet of vehicle has the property of sparsity, which can be transformed to a sparse recovery problem due to compressive sensing. The accurate target localization relies on the sufficient measurements, but we cannot determine the number of measurements without knowing the number of targets. In this poster, we propose a novel target localization algorithm based on sequential compressed sensing to select the optimal number of measurements and estimate target locations via lp-norm (0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于顺序压缩感知的车联网目标定位算法
基于网格的车联网目标定位具有稀疏性,可通过压缩感知转化为稀疏恢复问题。准确的目标定位依赖于足够的测量量,但如果不知道目标的数量,就无法确定测量的次数。在这张海报中,我们提出了一种新的基于顺序压缩感知的目标定位算法,该算法通过lp-norm (0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1