Computing a lower bound for the solution of a Robotic Process Automation (RPA) problem using network flows

Imène Benkalaï, Sara Séguin, Hugo Tremblay, Geoffrey Glangine
{"title":"Computing a lower bound for the solution of a Robotic Process Automation (RPA) problem using network flows","authors":"Imène Benkalaï, Sara Séguin, Hugo Tremblay, Geoffrey Glangine","doi":"10.1109/CoDIT49905.2020.9263933","DOIUrl":null,"url":null,"abstract":"Robotic process automation (RPA) helps companies reduce the time required to process tasks by using software or robots to mimic human actions on graphic interfaces. In this paper, the RPA problem is solved for a financial institution. A set of different types of financial transactions are to be processed with different processing times, volumes, market hours and clearance delays. In a previous work, a two-phase linear integer model was used to solve the problem on small instances. In this study, a network flow algorithm is used to compute a lower bound for the problem, thus reducing the computational time required to obtain a solution. The method is tested on a real case provided by a bank in North America and on synthetic test cases containing a greater number of transaction types. Results show that combining the computation of the lower bound with a linear integer model is faster and more practical.","PeriodicalId":355781,"journal":{"name":"2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT49905.2020.9263933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Robotic process automation (RPA) helps companies reduce the time required to process tasks by using software or robots to mimic human actions on graphic interfaces. In this paper, the RPA problem is solved for a financial institution. A set of different types of financial transactions are to be processed with different processing times, volumes, market hours and clearance delays. In a previous work, a two-phase linear integer model was used to solve the problem on small instances. In this study, a network flow algorithm is used to compute a lower bound for the problem, thus reducing the computational time required to obtain a solution. The method is tested on a real case provided by a bank in North America and on synthetic test cases containing a greater number of transaction types. Results show that combining the computation of the lower bound with a linear integer model is faster and more practical.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用网络流计算机器人过程自动化(RPA)问题解的下界
机器人流程自动化(RPA)通过使用软件或机器人在图形界面上模仿人类行为,帮助公司减少处理任务所需的时间。本文针对某金融机构解决了RPA问题。处理一系列不同类型的金融交易,其处理时间、数量、市场时间和清关延迟各不相同。在以前的工作中,采用两阶段线性整数模型来解决小实例的问题。在本研究中,使用网络流算法来计算问题的下界,从而减少了求解所需的计算时间。该方法在北美一家银行提供的真实案例和包含更多交易类型的合成测试案例上进行了测试。结果表明,将下界计算与线性整数模型相结合,速度更快,更实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory tracking controller for nonlinear systems with disturbances using iterative learning algorithm without resetting condition Influence of a water flow variation on the efficiency of a hybrid PV/T water panel Demand-Oriented Rescheduling of Railway Traffic in Case of Delays Synergetic Synthesis of Adaptive Control of an Electro-pneumatic System Tourist Behaviour Analysis Based on Digital Pattern of Life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1