Short-term load forecasting using diagonal recurrent neural network

K.Y. Lee, T. Choi, C. Ku, J.H. Park
{"title":"Short-term load forecasting using diagonal recurrent neural network","authors":"K.Y. Lee, T. Choi, C. Ku, J.H. Park","doi":"10.1109/ANN.1993.264286","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for short term load forecasting using a diagonal recurrent neural network with an adaptive learning rate. The fully connected recurrent neural network (FRNN), where all neurons are coupled to one another, is difficult to train and to converge in a short time. The DRNN is a modified model of FRNN. It requires fewer weights than FRNN and rapid convergence has been demonstrated. A dynamic backpropagation algorithm coupled with an adaptive learning rate guarantees even faster convergence. To consider the effect of seasonal load variation on the accuracy of the proposed forecasting model, forecasting accuracy is evaluated throughout a whole year. Simulation results show that the forecast accuracy is improved.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

This paper presents a new approach for short term load forecasting using a diagonal recurrent neural network with an adaptive learning rate. The fully connected recurrent neural network (FRNN), where all neurons are coupled to one another, is difficult to train and to converge in a short time. The DRNN is a modified model of FRNN. It requires fewer weights than FRNN and rapid convergence has been demonstrated. A dynamic backpropagation algorithm coupled with an adaptive learning rate guarantees even faster convergence. To consider the effect of seasonal load variation on the accuracy of the proposed forecasting model, forecasting accuracy is evaluated throughout a whole year. Simulation results show that the forecast accuracy is improved.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于对角递归神经网络的短期负荷预测
本文提出了一种利用自适应学习率的对角递归神经网络进行短期负荷预测的新方法。全连接递归神经网络(FRNN)的所有神经元都是相互耦合的,其训练难度大,且难以在短时间内收敛。DRNN是对FRNN的改进模型。它比FRNN需要更少的权重,收敛速度快。动态反向传播算法与自适应学习率相结合,保证更快的收敛速度。为了考虑季节负荷变化对预测模型精度的影响,对预测精度进行了全年评估。仿真结果表明,该方法提高了预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive fuzzy logic controller for AC-DC power systems Discrimination of partial discharge from noise in XLPE cable lines using a neural network Automation, with neural network based techniques, of short-term load forecasting at the Belgian national control centre Maximum electric power demand prediction by neural network Restoring current signals in real time using feedforward neural nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1