Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA

P. Kranen, Hardy Kremer, Timm Jansen, T. Seidl, A. Bifet, G. Holmes, B. Pfahringer
{"title":"Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA","authors":"P. Kranen, Hardy Kremer, Timm Jansen, T. Seidl, A. Bifet, G. Holmes, B. Pfahringer","doi":"10.1109/ICDMW.2010.17","DOIUrl":null,"url":null,"abstract":"In today's applications, evolving data streams are ubiquitous. Stream clustering algorithms were introduced to gain useful knowledge from these streams in real-time. The quality of the obtained clusterings, i.e. how good they reflect the data, can be assessed by evaluation measures. A multitude of stream clustering algorithms and evaluation measures for clusterings were introduced in the literature, however, until now there is no general tool for a direct comparison of the different algorithms or the evaluation measures. In our demo, we present a novel experimental framework for both tasks. It offers the means for extensive evaluation and visualization and is an extension of the Massive Online Analysis (MOA) software environment released under the GNU GPL License.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In today's applications, evolving data streams are ubiquitous. Stream clustering algorithms were introduced to gain useful knowledge from these streams in real-time. The quality of the obtained clusterings, i.e. how good they reflect the data, can be assessed by evaluation measures. A multitude of stream clustering algorithms and evaluation measures for clusterings were introduced in the literature, however, until now there is no general tool for a direct comparison of the different algorithms or the evaluation measures. In our demo, we present a novel experimental framework for both tasks. It offers the means for extensive evaluation and visualization and is an extension of the Massive Online Analysis (MOA) software environment released under the GNU GPL License.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
演化数据流的聚类性能:MOA中的评估算法和评估方法
在今天的应用程序中,不断发展的数据流无处不在。引入了流聚类算法,从这些流中实时获取有用的知识。所获得的聚类的质量,即它们对数据的反映程度,可以通过评价度量来评估。文献中介绍了大量的流聚类算法和聚类的评价方法,但是到目前为止,还没有一个通用的工具可以直接比较不同的算法或评价方法。在我们的演示中,我们为这两个任务提出了一个新的实验框架。它提供了广泛的评估和可视化的手段,是在GNU GPL许可下发布的大规模在线分析(MOA)软件环境的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Path Integral Inspired Query Sequence Suggestion for User Search Task Simplification PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations SIMPLE: Interactive Analytics on Patent Data Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1