Robust Convergence Analysis of Three-Operator Splitting

Han Wang, Mahyar Fazlyab, Shaoru Chen, V. Preciado
{"title":"Robust Convergence Analysis of Three-Operator Splitting","authors":"Han Wang, Mahyar Fazlyab, Shaoru Chen, V. Preciado","doi":"10.1109/ALLERTON.2019.8919695","DOIUrl":null,"url":null,"abstract":"Operator splitting methods solve composite optimization problems by breaking them into smaller sub-problems that can be solved sequentially or in parallel. In this paper, we propose a unified framework for certifying both linear and sublinear convergence rates for three-operator splitting (TOS) method under a variety of assumptions about the objective function. By viewing the algorithm as a dynamical system with feedback uncertainty (the oracle model), we leverage robust control theory to analyze the worst-case performance of the algorithm using matrix inequalities. We then show how these matrix inequalities can be used to verify sublinear/linear convergence of the TOS algorithm and guide the search for selecting the parameters of the algorithm (both symbolically and numerically) for optimal worst-case performance. We illustrate our results numerically by solving an input-constrained optimal control problem.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Operator splitting methods solve composite optimization problems by breaking them into smaller sub-problems that can be solved sequentially or in parallel. In this paper, we propose a unified framework for certifying both linear and sublinear convergence rates for three-operator splitting (TOS) method under a variety of assumptions about the objective function. By viewing the algorithm as a dynamical system with feedback uncertainty (the oracle model), we leverage robust control theory to analyze the worst-case performance of the algorithm using matrix inequalities. We then show how these matrix inequalities can be used to verify sublinear/linear convergence of the TOS algorithm and guide the search for selecting the parameters of the algorithm (both symbolically and numerically) for optimal worst-case performance. We illustrate our results numerically by solving an input-constrained optimal control problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三算子分裂的鲁棒收敛性分析
算子分裂方法通过将复合优化问题分解成更小的子问题来解决复合优化问题,这些子问题可以依次或并行地解决。在本文中,我们提出了一个统一的框架来证明三算子分裂(TOS)方法在目标函数的各种假设下的线性和次线性收敛速率。通过将算法视为具有反馈不确定性的动态系统(oracle模型),我们利用鲁棒控制理论利用矩阵不等式来分析算法的最坏情况性能。然后,我们展示了如何使用这些矩阵不等式来验证TOS算法的次线性/线性收敛性,并指导搜索选择算法的参数(符号和数值)以获得最佳最坏情况性能。我们通过解决一个输入约束的最优控制问题来数值说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Sequential Gradient-Based Multiple Access for Distributed Learning over Fading Channels Scheduling Policies for Minimizing Job Migration and Server Running Costs for Cloud Computing Platforms Explicit Low-complexity Codes for Multiple Access Channel Resolvability Byzantine Fault-Tolerant Parallelized Stochastic Gradient Descent for Linear Regression Deep Reinforcement Learning Based Power Control for Wireless Multicast Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1