Huitao Wang, Kai Su, I. M. Chowdhury, Qiangfu Zhao, Yoichi Tomioka
{"title":"Comparison Between Block-Wise Detection and A Modular Selective Approach","authors":"Huitao Wang, Kai Su, I. M. Chowdhury, Qiangfu Zhao, Yoichi Tomioka","doi":"10.1109/iCAST51195.2020.9319484","DOIUrl":null,"url":null,"abstract":"On-road risk detection and alert system is a crucial and important task in our day to day life. Deep Learning approaches have got much attention in solving this noble task. In this paper, we have performed a comparative study on two recent architectures that handle the on-road risk detection task, which are Block-Wise Detection and Modular Selective Network (MS-Net). In the Block-Wise Detection, we have used the VGG19, VGG19-BN, and ResNet family as the backbone network. On the other hand, for MS-Net we have used the ResNet-44 as the router and ResNet-101 as the expert network. In this experiment, we evaluate our model on an “on-road risk detection dataset”, which was created by our research group using an RGB-D sensor mounted on a senior car. On this dataset, we can achieve an accuracy of 89.40% for MS-Net. For the Block-Wise Detection model, we can achieve an accuracy of 90.51% if we use ResNet-50 as the backbone network. However, if we choose the network models used in MS-Net, we can double the inference speed. Thus, compared with Block-Wise Detection, we think the overall performance of MS-NET is better, and is potentially more useful for driving assistance of elderly drivers.","PeriodicalId":212570,"journal":{"name":"2020 11th International Conference on Awareness Science and Technology (iCAST)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCAST51195.2020.9319484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
On-road risk detection and alert system is a crucial and important task in our day to day life. Deep Learning approaches have got much attention in solving this noble task. In this paper, we have performed a comparative study on two recent architectures that handle the on-road risk detection task, which are Block-Wise Detection and Modular Selective Network (MS-Net). In the Block-Wise Detection, we have used the VGG19, VGG19-BN, and ResNet family as the backbone network. On the other hand, for MS-Net we have used the ResNet-44 as the router and ResNet-101 as the expert network. In this experiment, we evaluate our model on an “on-road risk detection dataset”, which was created by our research group using an RGB-D sensor mounted on a senior car. On this dataset, we can achieve an accuracy of 89.40% for MS-Net. For the Block-Wise Detection model, we can achieve an accuracy of 90.51% if we use ResNet-50 as the backbone network. However, if we choose the network models used in MS-Net, we can double the inference speed. Thus, compared with Block-Wise Detection, we think the overall performance of MS-NET is better, and is potentially more useful for driving assistance of elderly drivers.