Kalman filter-based localization for Internet of Things LoRaWAN™ end points

Wafae Bakkali, M. Kieffer, M. Lalam, T. Lestable
{"title":"Kalman filter-based localization for Internet of Things LoRaWAN™ end points","authors":"Wafae Bakkali, M. Kieffer, M. Lalam, T. Lestable","doi":"10.1109/PIMRC.2017.8292242","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of estimating the location of Internet of Things (IoT) Long Range Wide Area Networks (LoRaWAN) devices from time of arrival differences measured at gateways. An Extended Kalman Filter (EKF) based approach is considered to aggregate the measurements obtained at different time instants. Particular attention is paid to the processing of outliers. Based on experimental data obtained from field measurements conducted on a real LoRaWAN™ network an insight into the realistic localization accuracy of the considered localization approach is provided.","PeriodicalId":397107,"journal":{"name":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2017.8292242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper addresses the problem of estimating the location of Internet of Things (IoT) Long Range Wide Area Networks (LoRaWAN) devices from time of arrival differences measured at gateways. An Extended Kalman Filter (EKF) based approach is considered to aggregate the measurements obtained at different time instants. Particular attention is paid to the processing of outliers. Based on experimental data obtained from field measurements conducted on a real LoRaWAN™ network an insight into the realistic localization accuracy of the considered localization approach is provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卡尔曼滤波的物联网LoRaWAN™端点定位
本文解决了从网关测量的到达时间差异估计物联网(IoT)远程广域网(LoRaWAN)设备位置的问题。提出了一种基于扩展卡尔曼滤波(EKF)的方法来对不同时刻的测量结果进行聚合。特别注意异常值的处理。基于在真实的LoRaWAN™网络上进行的现场测量获得的实验数据,提供了对所考虑的定位方法的实际定位精度的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RSSI-based self-localization with perturbed anchor positions Bit precision study of a non-orthogonal iterative detector with FPGA modelling verification Analytical approach to base station sleep mode power consumption and sleep depth Experimental over-the-air testing for coexistence of 4G and a spectrally efficient non-orthogonal signal Secrecy analysis of random wireless networks with multiple eavesdroppers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1