Nonparametric kernel estimation for error density

Z. Li, Shu Zhao Zou
{"title":"Nonparametric kernel estimation for error density","authors":"Z. Li, Shu Zhao Zou","doi":"10.1109/WITS.1994.513920","DOIUrl":null,"url":null,"abstract":"Summary form only given. Consider a linear model, y/sub i/=x'/sub i//spl beta/+e/sub i/, i=1,2,..., x'/sub i/s are p(/spl ges/1) dimension known vectors and /spl beta/(/spl isin/R/spl deg/) is an unknown parametric vector and e/sub i/ are assumed i.i.d.r.v.'s from a common unknown density function f(x) with med (e/sub i/)=0. Based on LAD (least absolute deviations) estimator /spl beta//spl tilde/ of /spl beta/, we propose a nonparametric method to estimate unknown f(x). A kernel estimator f/spl tilde//sub n/(x) is obtained. Large sample properties of f/spl tilde//sub n/(x) are studied. Some computational examples are also given.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary form only given. Consider a linear model, y/sub i/=x'/sub i//spl beta/+e/sub i/, i=1,2,..., x'/sub i/s are p(/spl ges/1) dimension known vectors and /spl beta/(/spl isin/R/spl deg/) is an unknown parametric vector and e/sub i/ are assumed i.i.d.r.v.'s from a common unknown density function f(x) with med (e/sub i/)=0. Based on LAD (least absolute deviations) estimator /spl beta//spl tilde/ of /spl beta/, we propose a nonparametric method to estimate unknown f(x). A kernel estimator f/spl tilde//sub n/(x) is obtained. Large sample properties of f/spl tilde//sub n/(x) are studied. Some computational examples are also given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
误差密度的非参数核估计
只提供摘要形式。考虑一个线性模型,y/下标i/=x'/下标i//spl beta/+e/下标i/, i=1,2,…其中,x'/下标i/s为p(/spl ges/1)维已知向量,/spl β /(/spl isin/R/spl deg/)为未知参数向量,e/下标i/为假设向量。由一个常见的未知密度函数f(x)得到,其中med (e/下标i/)=0。基于最小绝对偏差估计量/spl beta//spl波浪//spl beta/,我们提出了一种估计未知f(x)的非参数方法。得到一个核估计量f/spl tilde//sub n/(x)。研究了f/spl波浪//sub n/(x)的大样本性质。并给出了一些计算实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1