Cognitive Radio Network Security Enhancement Based on Frequency Hopping

A. A. Kadhim, S. Sadkhan
{"title":"Cognitive Radio Network Security Enhancement Based on Frequency Hopping","authors":"A. A. Kadhim, S. Sadkhan","doi":"10.1109/ICOASE51841.2020.9436593","DOIUrl":null,"url":null,"abstract":"Cognitive Radio (CR) is the technology of used free spectrum band based on the main element as the primary, secondary users, through the structure can sense the surrounding environment and adapt to the different operating parameters to enhance the communication quality. A flexible and adaptable physical layer implementation is needed to achieve a better enhancement cognitive radio system. In this paper, the proposed system based on the most beneficial spread spectrum technique based on the used parameters determined as the Frequency-hopping spread spectrum (FHSS) to attend the Physical layer requirements of Cognitive Radio. The used system based on the Throughput, Data Drop Rate, Detection Time and Delay Time simulation parameters. The used method provides high throughput performance for CR implementation with simulation parameters used and sent/received data messages, So the number of data transmission without errors increased. Besides, we simulate Noise-Jamming attack in cognitive radio network Environment. Moreover, the proposed system has been done using OMNET++ simulation tool and. net Framework C# tool.","PeriodicalId":126112,"journal":{"name":"2020 International Conference on Advanced Science and Engineering (ICOASE)","volume":"293 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE51841.2020.9436593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Cognitive Radio (CR) is the technology of used free spectrum band based on the main element as the primary, secondary users, through the structure can sense the surrounding environment and adapt to the different operating parameters to enhance the communication quality. A flexible and adaptable physical layer implementation is needed to achieve a better enhancement cognitive radio system. In this paper, the proposed system based on the most beneficial spread spectrum technique based on the used parameters determined as the Frequency-hopping spread spectrum (FHSS) to attend the Physical layer requirements of Cognitive Radio. The used system based on the Throughput, Data Drop Rate, Detection Time and Delay Time simulation parameters. The used method provides high throughput performance for CR implementation with simulation parameters used and sent/received data messages, So the number of data transmission without errors increased. Besides, we simulate Noise-Jamming attack in cognitive radio network Environment. Moreover, the proposed system has been done using OMNET++ simulation tool and. net Framework C# tool.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于跳频的认知无线网络安全增强
认知无线电(Cognitive Radio, CR)是利用基于主元的自由频段作为主要、次要用户,通过该结构可以感知周围环境并适应不同的运行参数来提高通信质量的技术。为了实现更好的增强认知无线电系统,需要灵活、适应性强的物理层实现。本文提出了一种基于最有利的扩频技术的系统,该系统基于所使用的参数确定为跳频扩频(FHSS)来满足认知无线电的物理层要求。该系统采用基于吞吐量、数据丢失率、检测时间和延迟时间等参数进行仿真。所采用的方法为使用仿真参数和发送/接收数据消息的CR实现提供了高吞吐量性能,从而增加了无错误数据传输的数量。此外,我们还模拟了认知无线网络环境下的噪声干扰攻击。并利用omnet++仿真工具对系统进行了仿真。. net Framework c#工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
COVID-19 Diagnosis Systems Based on Deep Convolutional Neural Networks Techniques: A Review Fake News Detection Using Machine Learning and Deep Learning Algorithms Transcript Validation System using biometric characteristics COVID-19 Diagnosis from Chest X-ray Images Using Deep Learning Approach Hate Speech Detection Using Genetic Programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1