PERBANDINGAN KINERJA VARIASI NAÏVE BAYES MULTIVARIATE BERNOULLI DAN NAÏVE BAYES MULTINOMIAL DALAM PENGKLASIFIKASIAN DOKUMEN TEKS

Widyawati Widyawati, S. Sutanto
{"title":"PERBANDINGAN KINERJA VARIASI NAÏVE BAYES MULTIVARIATE BERNOULLI DAN NAÏVE BAYES MULTINOMIAL DALAM PENGKLASIFIKASIAN DOKUMEN TEKS","authors":"Widyawati Widyawati, S. Sutanto","doi":"10.47080/IFTECH.V2I1.859","DOIUrl":null,"url":null,"abstract":"Classification of text documents with large amounts will be a job that requires a lot of time, effort and cost of having to read text documents and then categorize them manually, therefore the automatic classification of text documents is needed. The algorithm developed is K-Nearest-Neighbor (KNN), Naïve Bayes, Support Vector Machine (SVM), Decision Tree (DT), Neural Network (NN) and Maximum Entropy. The algorithm used as the object of research is a variation of the Naïve Bayes algorithm, the Naïve Bayes Multivariate Bernoulli and the Naïve Bayes Multinomial. This study discusses whether there are differences between the Algorithms. The Naïve Bayes Multivariate Bernoulli algorithm and the Naïve Bayes Multinomial can be seen from the value of the agreement and the speed of the process of classifying text documents, as well as more information about the process of processing requests that are getting more and more requested. While the highest value using the non-stemming Naïve Bayes Bernoulli method is 71.33%, and the fastest processing time is required using the non-stemming Naïve Bayes method which requires 0.12 seconds processing time.","PeriodicalId":117120,"journal":{"name":"Journal of Innovation And Future Technology (IFTECH)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovation And Future Technology (IFTECH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47080/IFTECH.V2I1.859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Classification of text documents with large amounts will be a job that requires a lot of time, effort and cost of having to read text documents and then categorize them manually, therefore the automatic classification of text documents is needed. The algorithm developed is K-Nearest-Neighbor (KNN), Naïve Bayes, Support Vector Machine (SVM), Decision Tree (DT), Neural Network (NN) and Maximum Entropy. The algorithm used as the object of research is a variation of the Naïve Bayes algorithm, the Naïve Bayes Multivariate Bernoulli and the Naïve Bayes Multinomial. This study discusses whether there are differences between the Algorithms. The Naïve Bayes Multivariate Bernoulli algorithm and the Naïve Bayes Multinomial can be seen from the value of the agreement and the speed of the process of classifying text documents, as well as more information about the process of processing requests that are getting more and more requested. While the highest value using the non-stemming Naïve Bayes Bernoulli method is 71.33%, and the fastest processing time is required using the non-stemming Naïve Bayes method which requires 0.12 seconds processing time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对大量的文本文档进行分类将是一项需要大量时间、精力和成本的工作,必须阅读文本文档,然后手动进行分类,因此需要对文本文档进行自动分类。开发的算法是k -最近邻(KNN), Naïve贝叶斯,支持向量机(SVM),决策树(DT),神经网络(NN)和最大熵。作为研究对象的算法是Naïve贝叶斯算法、Naïve贝叶斯多元伯努利和Naïve贝叶斯多项的一种变体。本研究讨论了算法之间是否存在差异。Naïve Bayes Multivariate Bernoulli算法和Naïve Bayes Multinomial算法可以从协议的价值和文本文档分类过程的速度,以及越来越多的请求处理过程的更多信息中看出。而使用非词干化Naïve贝叶斯伯努利方法的最大值为71.33%,使用非词干化Naïve贝叶斯方法的处理时间最快,处理时间为0.12秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PENGEMBANGAN SISTEM PELAPORAN BENCANA KEBAKARAN PADA DINAS PEMADAM KEBAKARAN SISTEM INFORMASI PENDATAAN OBAT MASUK PADA APOTEK HERBANA CILEGON BERBASIS WEB DENGAN MENGGUNAKAN PEMROGRAMAN CODEIGNITER PERANCANGAN SISTEM INFORMASI PELAYANAN ADMINISTRASI PENDUDUK PADA KELURAHAN LEMBANGSARI SISTEM PENDUKUNG KEPUTUSAN PEMBERIAN PENGHARGAAN KARYAWAN MENGGUNAKAN METODE MULTI-ATTRIBUTE UTILITY THEORY (MAUT) DI PT NIKOMAS GEMILANG RANCANG BANGUN APLIKASI PENGINGAT MAKAN DAN MINUM BERBASIS ANDROID
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1