Deep Learning Approach For Automatic Detection Of Oil Slicks

Z. Huang, P. Xie, V. Miegebielle
{"title":"Deep Learning Approach For Automatic Detection Of Oil Slicks","authors":"Z. Huang, P. Xie, V. Miegebielle","doi":"10.3997/2214-4609.201803022","DOIUrl":null,"url":null,"abstract":"The aim of this study is to propose a deep learning approach for automatic oil slicks detection over surface of ocean based on Synthetic Aperture Radar (SAR) images. Deep networks such as U-Net is a kind of image-segmentation-based algorithm which is proved to be effective for varies of image segmentation problems. Here we introduce an U-Net framework for our oil slicks segmentation task. Our database comes from SAR images of 5 differents regions over the world and is divided into training set and test set. With this U-Net structure, we have achieved an overall precision of 93% and a recall rate of 71% with our test set. The algorithm is able to distinguish between oil slicks and other object known as “lookalike”.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this study is to propose a deep learning approach for automatic oil slicks detection over surface of ocean based on Synthetic Aperture Radar (SAR) images. Deep networks such as U-Net is a kind of image-segmentation-based algorithm which is proved to be effective for varies of image segmentation problems. Here we introduce an U-Net framework for our oil slicks segmentation task. Our database comes from SAR images of 5 differents regions over the world and is divided into training set and test set. With this U-Net structure, we have achieved an overall precision of 93% and a recall rate of 71% with our test set. The algorithm is able to distinguish between oil slicks and other object known as “lookalike”.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的浮油自动检测方法
本研究的目的是提出一种基于合成孔径雷达(SAR)图像的海洋表面浮油自动检测的深度学习方法。U-Net等深度网络是一种基于图像分割的算法,已被证明对各种图像分割问题都是有效的。在这里,我们为我们的浮油分割任务引入了一个U-Net框架。我们的数据库来自全球5个不同地区的SAR图像,分为训练集和测试集。使用这种U-Net结构,我们在测试集上实现了93%的总体精度和71%的召回率。该算法能够区分浮油和其他被称为“相似物”的物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pre-Stack Seismic Inversion With Deep Learning Automatic Facies Classification And Horizon Tracking In 3D Seismic Data Input Data Quality Influence On Lithoclass Predictions In Relation To Supervised Machine Learning Classification And Suppression Of Blending Noise Using CNN Machine Learning To Support Technical Document Indexing, How To Measure The Accuracy?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1