{"title":"matteo-brv @ DaDoEval: An SVM-based Approach for Automatic Document Dating (short paper)","authors":"M. Brivio","doi":"10.4000/BOOKS.AACCADEMIA.7593","DOIUrl":null,"url":null,"abstract":"English. This paper describes our con-tribution to the EVALITA 2020 shared task DaDoEval – Dating Document Evaluation. The solution we present is based on a linear multi-class Support Vector Machine classifier trained on a combination of character and word n-grams, as well as number of word tokens per document. Despite its simplicity, the system ranked first both in the coarse-grained classification task on same-genre data and in the one on cross-genre data, achieving a macro-average F1 score of 0.934 and 0.413, respectively. The system implementation is available at https://github.com/ matteobrv/DaDoEval .","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
English. This paper describes our con-tribution to the EVALITA 2020 shared task DaDoEval – Dating Document Evaluation. The solution we present is based on a linear multi-class Support Vector Machine classifier trained on a combination of character and word n-grams, as well as number of word tokens per document. Despite its simplicity, the system ranked first both in the coarse-grained classification task on same-genre data and in the one on cross-genre data, achieving a macro-average F1 score of 0.934 and 0.413, respectively. The system implementation is available at https://github.com/ matteobrv/DaDoEval .