Hyewon Lee, I. Tinnirello, Jeonggyun Yu, Sunghyun Choi
{"title":"Throughput and Delay Analysis of IEEE 802.1le Block ACK with Channel Errors","authors":"Hyewon Lee, I. Tinnirello, Jeonggyun Yu, Sunghyun Choi","doi":"10.1109/COMSWA.2007.382498","DOIUrl":null,"url":null,"abstract":"Recently, along with many emerging applications and services over Wireless LANs (WLANs), the demands for higher-speed WLANs have been growing drastically. However, it is well known that IEEE 802.11 Medium Access Control (MAC) has a high overhead. As a solution to improve the system efficiency, the new IEEE 802.11e MAC introduces Block ACK scheme. In this paper, we mathematically analyze both throughput and delay performances of the 802.11e Block ACK scheme over a noisy channel considering the Block ACK protection scheme. Then, the numerical results are verified with ns-2 simulations.","PeriodicalId":191295,"journal":{"name":"2007 2nd International Conference on Communication Systems Software and Middleware","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Conference on Communication Systems Software and Middleware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSWA.2007.382498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Recently, along with many emerging applications and services over Wireless LANs (WLANs), the demands for higher-speed WLANs have been growing drastically. However, it is well known that IEEE 802.11 Medium Access Control (MAC) has a high overhead. As a solution to improve the system efficiency, the new IEEE 802.11e MAC introduces Block ACK scheme. In this paper, we mathematically analyze both throughput and delay performances of the 802.11e Block ACK scheme over a noisy channel considering the Block ACK protection scheme. Then, the numerical results are verified with ns-2 simulations.