QCRI advanced transcription system (QATS) for the Arabic Multi-Dialect Broadcast media recognition: MGB-2 challenge

Sameer Khurana, Ahmed M. Ali
{"title":"QCRI advanced transcription system (QATS) for the Arabic Multi-Dialect Broadcast media recognition: MGB-2 challenge","authors":"Sameer Khurana, Ahmed M. Ali","doi":"10.1109/SLT.2016.7846279","DOIUrl":null,"url":null,"abstract":"In this paper, we describe Qatar Computing Research Institute's (QCRI) speech transcription system for the 2016 Dialectal Arabic Multi-Genre Broadcast (MGB-2) challenge. MGB-2 is a controlled evaluation using 1,200 hours audio with lightly supervised transcription Our system which was a combination of three purely sequence trained recognition systems, achieved the lowest WER of 14.2% among the nine participating teams. Key features of our transcription system are: purely sequence trained acoustic models using the recently introduced Lattice free Maximum Mutual Information (LF-MMI) modeling framework; Language model rescoring using a four-gram and Recurrent Neural Network with Max- Ent connections (RNNME) language models; and system combination using Minimum Bayes Risk (MBR) decoding criterion. The whole system is built using kaldi speech recognition toolkit.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

In this paper, we describe Qatar Computing Research Institute's (QCRI) speech transcription system for the 2016 Dialectal Arabic Multi-Genre Broadcast (MGB-2) challenge. MGB-2 is a controlled evaluation using 1,200 hours audio with lightly supervised transcription Our system which was a combination of three purely sequence trained recognition systems, achieved the lowest WER of 14.2% among the nine participating teams. Key features of our transcription system are: purely sequence trained acoustic models using the recently introduced Lattice free Maximum Mutual Information (LF-MMI) modeling framework; Language model rescoring using a four-gram and Recurrent Neural Network with Max- Ent connections (RNNME) language models; and system combination using Minimum Bayes Risk (MBR) decoding criterion. The whole system is built using kaldi speech recognition toolkit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于阿拉伯语多方言广播媒体识别的QCRI高级转录系统(QATS): MGB-2的挑战
在本文中,我们描述了卡塔尔计算研究所(QCRI)的语音转录系统,用于2016年阿拉伯方言多类型广播(MGB-2)挑战。MGB-2是使用1200小时音频和轻度监督转录的受控评估。我们的系统是三个纯粹序列训练识别系统的组合,在九个参与团队中实现了最低的14.2%的WER。我们的转录系统的主要特点是:使用最近引入的晶格自由最大互信息(LF-MMI)建模框架的纯序列训练声学模型;基于四元神经网络和循环神经网络(RNNME)语言模型的语言模型重建采用最小贝叶斯风险(MBR)解码准则进行系统组合。整个系统采用kaldi语音识别工具箱构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1