Online Algorithms for Weighted Paging with Predictions

Zhihao Jiang, Debmalya Panigrahi, Kevin Sun
{"title":"Online Algorithms for Weighted Paging with Predictions","authors":"Zhihao Jiang, Debmalya Panigrahi, Kevin Sun","doi":"10.1145/3548774","DOIUrl":null,"url":null,"abstract":"In this article, we initiate the study of the weighted paging problem with predictions. This continues the recent line of work in online algorithms with predictions, particularly that of Lykouris and Vassilvitski (ICML 2018) and Rohatgi (SODA 2020) on unweighted paging with predictions. We show that unlike unweighted paging, neither a fixed lookahead nor a knowledge of the next request for every page is sufficient information for an algorithm to overcome the existing lower bounds in weighted paging. However, a combination of the two, which we call strong per request prediction (SPRP), suffices to give a 2-competitive algorithm. We also explore the question of gracefully degrading algorithms with increasing prediction error, and give both upper and lower bounds for a set of natural measures of prediction error.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

In this article, we initiate the study of the weighted paging problem with predictions. This continues the recent line of work in online algorithms with predictions, particularly that of Lykouris and Vassilvitski (ICML 2018) and Rohatgi (SODA 2020) on unweighted paging with predictions. We show that unlike unweighted paging, neither a fixed lookahead nor a knowledge of the next request for every page is sufficient information for an algorithm to overcome the existing lower bounds in weighted paging. However, a combination of the two, which we call strong per request prediction (SPRP), suffices to give a 2-competitive algorithm. We also explore the question of gracefully degrading algorithms with increasing prediction error, and give both upper and lower bounds for a set of natural measures of prediction error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带预测的加权分页在线算法
在本文中,我们开始研究带预测的加权分页问题。这延续了最近在在线预测算法方面的工作,特别是Lykouris和Vassilvitski (ICML 2018)和Rohatgi (SODA 2020)在无加权分页预测方面的工作。我们表明,与非加权分页不同,对于算法克服加权分页中现有的下界来说,固定的前瞻性和每个页面的下一个请求的知识都不是足够的信息。然而,两者的结合,我们称之为强每请求预测(SPRP),足以给出一个双竞争算法。我们还探讨了随着预测误差的增加而优雅地退化算法的问题,并给出了一组预测误差的自然度量的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generic Techniques for Building Top-k Structures Deterministic Leader Election in Anonymous Radio Networks A Learned Approach to Design Compressed Rank/Select Data Structures k-apices of Minor-closed Graph Classes. II. Parameterized Algorithms Fully Dynamic (Δ +1)-Coloring in O(1) Update Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1