A global land aerosol fine-mode fraction dataset (2001–2020) retrieved from MODIS using hybrid physical and deep learning approaches

Xing Yan, Z. Zang, Zhanqing Li, N. Luo, Chen Zuo, Yize Jiang, Dan Li, Yushan Guo, Wenji Zhao, W. Shi, M. Cribb
{"title":"A global land aerosol fine-mode fraction dataset (2001–2020) retrieved from MODIS using hybrid physical and deep learning approaches","authors":"Xing Yan, Z. Zang, Zhanqing Li, N. Luo, Chen Zuo, Yize Jiang, Dan Li, Yushan Guo, Wenji Zhao, W. Shi, M. Cribb","doi":"10.5194/essd-2021-326","DOIUrl":null,"url":null,"abstract":"Abstract. The aerosol fine-mode fraction (FMF) is potentially valuable for discriminating natural aerosols from anthropogenic ones. However, most current satellite-based FMF products are highly unreliable. Here, we developed a new satellite-based global land daily FMF dataset (Phy-DL FMF) by synergizing the advantages of physical and deep learning methods at a 1° spatial resolution by covering the period from 2001 to 2020. The Phy-DL FMF dataset is comparable to Aerosol Robotic Network (AERONET) measurements, based on the analysis of 361,089 data samples from 1170 AERONET sites around the world. Overall, Phy-DL FMF showed a root-mean-square error of 0.136 and correlation coefficient of 0.68, and the proportion of results that fell within the ±20 % expected error window was 79.15 %. Phy-DL FMF showed superior performance over alternate deep learning or physical approaches (such as the spectral deconvolution algorithm presented in our previous studies), particularly for forests, grasslands, croplands, and urban and barren land types. As a long-term dataset, Phy-DL FMF is able to show an overall significant decreasing trend (at a 95 % significance level) over global land areas. Based on the trend analysis of Phy-DL FMF for different countries, the upward trend in the FMFs was particularly strong over India and the western USA. Overall, this study provides a new FMF dataset for global land areas that can help improve our understanding of spatiotemporal fine- and coarse-mode aerosol changes. The datasets can be downloaded from https://doi.org/10.5281/zenodo.5105617 (Yan, 2021).\n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/essd-2021-326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Abstract. The aerosol fine-mode fraction (FMF) is potentially valuable for discriminating natural aerosols from anthropogenic ones. However, most current satellite-based FMF products are highly unreliable. Here, we developed a new satellite-based global land daily FMF dataset (Phy-DL FMF) by synergizing the advantages of physical and deep learning methods at a 1° spatial resolution by covering the period from 2001 to 2020. The Phy-DL FMF dataset is comparable to Aerosol Robotic Network (AERONET) measurements, based on the analysis of 361,089 data samples from 1170 AERONET sites around the world. Overall, Phy-DL FMF showed a root-mean-square error of 0.136 and correlation coefficient of 0.68, and the proportion of results that fell within the ±20 % expected error window was 79.15 %. Phy-DL FMF showed superior performance over alternate deep learning or physical approaches (such as the spectral deconvolution algorithm presented in our previous studies), particularly for forests, grasslands, croplands, and urban and barren land types. As a long-term dataset, Phy-DL FMF is able to show an overall significant decreasing trend (at a 95 % significance level) over global land areas. Based on the trend analysis of Phy-DL FMF for different countries, the upward trend in the FMFs was particularly strong over India and the western USA. Overall, this study provides a new FMF dataset for global land areas that can help improve our understanding of spatiotemporal fine- and coarse-mode aerosol changes. The datasets can be downloaded from https://doi.org/10.5281/zenodo.5105617 (Yan, 2021).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用混合物理和深度学习方法从MODIS检索全球陆地气溶胶细模分数数据集(2001-2020)
摘要气溶胶细模分数(FMF)对于区分自然气溶胶和人为气溶胶具有潜在的价值。然而,目前大多数基于卫星的FMF产品都非常不可靠。在此,我们通过在1°空间分辨率下协同物理和深度学习方法的优势,开发了一个新的基于卫星的全球陆地日FMF数据集(Phy-DL FMF),覆盖时间为2001年至2020年。Phy-DL FMF数据集可与气溶胶机器人网络(AERONET)的测量结果相比较,该数据集基于对来自全球1170个AERONET站点的361,089个数据样本的分析。总体而言,Phy-DL FMF的均方根误差为0.136,相关系数为0.68,结果落在±20%预期误差范围内的比例为79.15%。Phy-DL FMF表现出优于其他深度学习或物理方法(如我们之前研究中提出的频谱反卷积算法)的性能,特别是对于森林、草原、农田、城市和荒地类型。作为一个长期数据集,Phy-DL FMF能够在全球陆地区域上显示出总体显着下降趋势(在95%的显著性水平上)。根据不同国家的ph - dl FMF趋势分析,FMF上升趋势在印度和美国西部尤为明显。总的来说,本研究提供了一个新的全球陆地区域FMF数据集,可以帮助我们提高对时空细模和粗模气溶胶变化的理解。数据集可从https://doi.org/10.5281/zenodo.5105617下载(Yan, 2021)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea LGHAP: a Long-term Gap-free High-resolution Air Pollutants concentration dataset derived via tensor flow based multimodal data fusion Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries Last Interglacial sea-level data points from Northwest Europe A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1