Enhancing urban resilience via a real-time decision support system for smart cities

S. Ottenburger, M. Airaksinen, Isabel Pinto-Seppa, W. Raskob
{"title":"Enhancing urban resilience via a real-time decision support system for smart cities","authors":"S. Ottenburger, M. Airaksinen, Isabel Pinto-Seppa, W. Raskob","doi":"10.1109/ICE.2017.8279970","DOIUrl":null,"url":null,"abstract":"The emergence of in-memory database technologies may be seen as a groundbreaking development in the segment of data storage and data analytics enabling end-users using real-time applications on top of big data. In this work, we propose a framework for a real-time decision support system for response during a crisis or disruption of critical infrastructures or their components grounding on in-memory database technologies and smart city data sources. A simulation software which utilizes a multi-agent based model for describing the landscape of a smart city's infrastructure or their components incorporating a generic framework for defining disruption scenarios, generates big data which is stored in a database applying in-memory database technologies. According to current urban status data and the type of disruptions, data including made decisions and strategies which are best in the sense of urban resilience is instantly collected from the database.","PeriodicalId":421648,"journal":{"name":"2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICE.2017.8279970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The emergence of in-memory database technologies may be seen as a groundbreaking development in the segment of data storage and data analytics enabling end-users using real-time applications on top of big data. In this work, we propose a framework for a real-time decision support system for response during a crisis or disruption of critical infrastructures or their components grounding on in-memory database technologies and smart city data sources. A simulation software which utilizes a multi-agent based model for describing the landscape of a smart city's infrastructure or their components incorporating a generic framework for defining disruption scenarios, generates big data which is stored in a database applying in-memory database technologies. According to current urban status data and the type of disruptions, data including made decisions and strategies which are best in the sense of urban resilience is instantly collected from the database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过智能城市实时决策支持系统增强城市韧性
内存数据库技术的出现可能被视为数据存储和数据分析领域的突破性发展,使最终用户能够在大数据之上使用实时应用程序。在这项工作中,我们提出了一个基于内存数据库技术和智慧城市数据源的实时决策支持系统框架,用于在危机或关键基础设施或其组件中断期间做出响应。模拟软件利用基于多代理的模型来描述智慧城市基础设施或其组件的景观,并结合定义中断场景的通用框架,生成大数据,这些数据存储在应用内存数据库技术的数据库中。根据当前的城市状况数据和中断类型,从数据库中立即收集数据,包括在城市恢复力意义上最好的决策和战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Urban-architect role in smart-city context literature review and case studies UX-FFE model: An experimentation of a new innovation process dedicated to a mature industrial company An examination of barriers to business model innovation Distributed software development of a cloud solution for collaborative manufacturing networks Testing and selecting mixed data type DEA scenarios with PCA post-processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1