A class of photometric invariants: separating material from shape and illumination

S. Narasimhan, Visvanathan Ramesh, S. Nayar
{"title":"A class of photometric invariants: separating material from shape and illumination","authors":"S. Narasimhan, Visvanathan Ramesh, S. Nayar","doi":"10.1109/ICCV.2003.1238652","DOIUrl":null,"url":null,"abstract":"We derive a new class of photometric invariants that can be used for a variety of vision tasks including lighting invariant material segmentation, change detection and tracking, as well as material invariant shape recognition. The key idea is the formulation of a scene radiance model for the class of \"separable\" BRDFs, that can be decomposed into material related terms and object shape and lighting related terms. All the proposed invariants are simple rational functions of the appearance parameters (say, material or shape and lighting). The invariants in this class differ from one another in the number and type of image measurements they require. Most of the invariants in this class need changes in illumination or object position between image acquisitions. The invariants can handle large changes in lighting which pose problems for most existing vision algorithms. We demonstrate the power of these invariants using scenes with complex shapes, materials, textures, shadows and specularities.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

We derive a new class of photometric invariants that can be used for a variety of vision tasks including lighting invariant material segmentation, change detection and tracking, as well as material invariant shape recognition. The key idea is the formulation of a scene radiance model for the class of "separable" BRDFs, that can be decomposed into material related terms and object shape and lighting related terms. All the proposed invariants are simple rational functions of the appearance parameters (say, material or shape and lighting). The invariants in this class differ from one another in the number and type of image measurements they require. Most of the invariants in this class need changes in illumination or object position between image acquisitions. The invariants can handle large changes in lighting which pose problems for most existing vision algorithms. We demonstrate the power of these invariants using scenes with complex shapes, materials, textures, shadows and specularities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类光度不变量:从形状和光照中分离物质
我们推导了一类新的光度不变量,可用于各种视觉任务,包括照明不变量材料分割,变化检测和跟踪,以及材料不变量形状识别。关键思想是为“可分离”brdf类建立场景亮度模型,该模型可以分解为与材料相关的术语和与物体形状和照明相关的术语。所有提出的不变量都是外观参数(例如,材料或形状和照明)的简单有理函数。这类中的不变量在它们需要的图像测量的数量和类型上彼此不同。这类中的大多数不变量需要在图像获取之间改变光照或物体位置。不变量可以处理光照的大变化,这给大多数现有的视觉算法带来了问题。我们使用具有复杂形状,材料,纹理,阴影和镜面的场景来展示这些不变量的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1