Acceleration of a High Order Accurate Method for Compressible Flows on SDSM Based GPU Clusters

Konstantinos I. Karantasis, E. D. Polychronopoulos, J. Ekaterinaris
{"title":"Acceleration of a High Order Accurate Method for Compressible Flows on SDSM Based GPU Clusters","authors":"Konstantinos I. Karantasis, E. D. Polychronopoulos, J. Ekaterinaris","doi":"10.1109/ICPADS.2010.107","DOIUrl":null,"url":null,"abstract":"The recent advent of multicore processors, and especially the introduction of many-core GPUs, opens new horizons to large-scale, high-resolution, simulations for a broad range of scientific fields. Among them, the scientific area of CFD appears to be one of the candidates that could significantly benefit from the utilization of many-core GPUs. In o rder to investigate such a potential, we evaluate the performance of a high-order accurate method for the simulation of compressible flows. Current implementation is taking place on a GPU cluster. Nevertheless, a novel approach is followed concerning the utilization of GPU clusters that does not involve explicit message passing. Instead, the presented implementation resides on Software Distributed Shared Memory (SDSM) to propagate changes across the simulation phases. The first results prove to be emboldening and lay grounds for further research along the use of shared memory abstraction in order to utilize future GPU clusters.","PeriodicalId":365914,"journal":{"name":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 16th International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2010.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The recent advent of multicore processors, and especially the introduction of many-core GPUs, opens new horizons to large-scale, high-resolution, simulations for a broad range of scientific fields. Among them, the scientific area of CFD appears to be one of the candidates that could significantly benefit from the utilization of many-core GPUs. In o rder to investigate such a potential, we evaluate the performance of a high-order accurate method for the simulation of compressible flows. Current implementation is taking place on a GPU cluster. Nevertheless, a novel approach is followed concerning the utilization of GPU clusters that does not involve explicit message passing. Instead, the presented implementation resides on Software Distributed Shared Memory (SDSM) to propagate changes across the simulation phases. The first results prove to be emboldening and lay grounds for further research along the use of shared memory abstraction in order to utilize future GPU clusters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SDSM的GPU集群可压缩流高阶精确加速方法
最近多核处理器的出现,特别是多核gpu的引入,为广泛的科学领域的大规模,高分辨率模拟开辟了新的视野。其中,CFD科学领域似乎是可以从多核gpu的使用中显著受益的候选领域之一。为了研究这种潜力,我们评估了一种用于模拟可压缩流动的高阶精确方法的性能。目前的实现是在GPU集群上进行的。然而,采用了一种新颖的方法来利用GPU集群,这种方法不涉及显式的消息传递。相反,呈现的实现驻留在软件分布式共享内存(SDSM)上,以便跨模拟阶段传播更改。第一个结果被证明是大胆的,并为进一步研究共享内存抽象的使用奠定了基础,以便利用未来的GPU集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixed-Parallel Implementations of Extrapolation Methods with Reduced Synchronization Overhead for Large Shared-Memory Computers Kumoi: A High-Level Scripting Environment for Collective Virtual Machines A Pervasive Simplified Method for Human Movement Pattern Assessing Broadcasting Algorithm Via Shortest Paths Detection of a Weak Conjunction of Unstable Predicates in Dynamic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1