A new idea for addressing multi-objective combinatorial optimization: Quantum multi-agent evolutionary algorithms

Dongming Zhao, Fei Tao
{"title":"A new idea for addressing multi-objective combinatorial optimization: Quantum multi-agent evolutionary algorithms","authors":"Dongming Zhao, Fei Tao","doi":"10.1109/CISS.2009.5054684","DOIUrl":null,"url":null,"abstract":"Multi-objective combinatorial optimization (MOCO) problem is investigated in this paper. Combining the characters of agent and quantum-bit, a new idea, i.e., Quantum multi-agent evolutionary algorithms (QMAEA), for addressing MOCO problem is proposed. In QMAEA, each agent represented with quantum-bit is defined as a solution. Several operations such as evaluation-operation, competition-operation, mutation-operation, and local-evolution-Operation are introduced in QMAEA. The working flow of QMAEA is presented.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multi-objective combinatorial optimization (MOCO) problem is investigated in this paper. Combining the characters of agent and quantum-bit, a new idea, i.e., Quantum multi-agent evolutionary algorithms (QMAEA), for addressing MOCO problem is proposed. In QMAEA, each agent represented with quantum-bit is defined as a solution. Several operations such as evaluation-operation, competition-operation, mutation-operation, and local-evolution-Operation are introduced in QMAEA. The working flow of QMAEA is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标组合优化的新思路:量子多智能体进化算法
研究了多目标组合优化(MOCO)问题。结合智能体和量子比特的特点,提出了一种求解MOCO问题的新思路——量子多智能体进化算法(QMAEA)。在QMAEA中,每个用量子比特表示的代理都被定义为一个解。在QMAEA中引入了求值运算、竞争运算、突变运算和局部演化运算等操作。给出了QMAEA的工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular recognition as an information channel: The role of conformational changes Extrinsic tree decoding Message transmission and state estimation over Gaussian broadcast channels Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements Speech enhancement using the multistage Wiener filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1