A Maximum Entropy Approach for Mapping Falcata Plantations in Sentinel-2 Imagery

Marcia Coleen N. Marcial, J. R. Santillan
{"title":"A Maximum Entropy Approach for Mapping Falcata Plantations in Sentinel-2 Imagery","authors":"Marcia Coleen N. Marcial, J. R. Santillan","doi":"10.1109/TENCON50793.2020.9293693","DOIUrl":null,"url":null,"abstract":"Mapping tree species is essential for monitoring, planning, and better managing industrial tree plantations (ITP). Due to the intensive procedure of field sampling and multi-class manual training data collection for image classification, an approach that allows fewer data would be efficient. This study evaluated the performance of a one-class classifier called Maximum Entropy (MaxEnt) for mapping Falcata (Paraserianthes falcataria) in Sentinel-2 imagery. Two MaxEnt parameters were tested, namely sample size and binary threshold. Using a default threshold of 0.5, MaxEnt can provide classification accuracies ranging from 89.41-92.84% using sample sizes as small as 30 and as high as 500. A 0.3 binary threshold applied to MaxEnt logistic output with 500 samples were the best parameter values for classifying Falcata using Sentinel-2 imagery.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mapping tree species is essential for monitoring, planning, and better managing industrial tree plantations (ITP). Due to the intensive procedure of field sampling and multi-class manual training data collection for image classification, an approach that allows fewer data would be efficient. This study evaluated the performance of a one-class classifier called Maximum Entropy (MaxEnt) for mapping Falcata (Paraserianthes falcataria) in Sentinel-2 imagery. Two MaxEnt parameters were tested, namely sample size and binary threshold. Using a default threshold of 0.5, MaxEnt can provide classification accuracies ranging from 89.41-92.84% using sample sizes as small as 30 and as high as 500. A 0.3 binary threshold applied to MaxEnt logistic output with 500 samples were the best parameter values for classifying Falcata using Sentinel-2 imagery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Sentinel-2影像的Falcata人工林最大熵映射方法
绘制树种分布图对于监测、规划和更好地管理工业人工林(ITP)至关重要。由于图像分类需要大量的现场采样和多类人工训练数据的收集,因此允许较少数据的方法将是有效的。本研究评估了一种称为最大熵(MaxEnt)的单类分类器在Sentinel-2图像中绘制Falcata (Paraserianthes falcataria)的性能。测试了两个MaxEnt参数,即样本量和二值阈值。使用默认阈值0.5,MaxEnt可以提供89.41-92.84%的分类准确率,样本大小可以小至30,大至500。使用Sentinel-2图像对500个样本的MaxEnt logistic输出应用0.3的二值阈值是对Falcata进行分类的最佳参数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Intrusive Diabetes Pre-diagnosis using Fingerprint Analysis with Multilayer Perceptron Smart Defect Detection and Sortation through Image Processing for Corn Short-term Unit Commitment Using Advanced Direct Load Control Leukemia Detection Mechanism through Microscopic Image and ML Techniques German Sign Language Translation using 3D Hand Pose Estimation and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1