{"title":"Measuring the impact of conceptual inquiry-based labs","authors":"Danny Doucette","doi":"10.1119/perc.2022.pr.doucette","DOIUrl":null,"url":null,"abstract":"Conceptual inquiry-based introductory physics labs deploy PER-informed pedagogical strategies in physics labs with the aim of helping to improve students’ understanding of physics concepts. Unlike traditional labs (which tend to be highly-structured and focus on verification of scientific relationships via precision measurements) and skills-based labs (which tend to eschew the aim of helping students learn physics concepts in favor of teaching experimental skills), some studies have suggested that conceptual inquiry-based labs may have a positive impact on student conceptual understanding, as measured by concept inventories. This paper reports on a randomized controlled study that compares student conceptual gains in electricity and magnetism between a conceptual inquiry-based lab and a skills-based lab. Following a difference-in-differences analytical strategy and using hierarchical linear modeling, the result from this study is that the conceptual inquiry-based lab pro-vides no additional benefit to students’ conceptual learning gains compared with the skills-based lab. Studies such as these may help physics departments make decisions about the goals and scope of transformations to their introductory lab courses.","PeriodicalId":253382,"journal":{"name":"2022 Physics Education Research Conference Proceedings","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Physics Education Research Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1119/perc.2022.pr.doucette","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conceptual inquiry-based introductory physics labs deploy PER-informed pedagogical strategies in physics labs with the aim of helping to improve students’ understanding of physics concepts. Unlike traditional labs (which tend to be highly-structured and focus on verification of scientific relationships via precision measurements) and skills-based labs (which tend to eschew the aim of helping students learn physics concepts in favor of teaching experimental skills), some studies have suggested that conceptual inquiry-based labs may have a positive impact on student conceptual understanding, as measured by concept inventories. This paper reports on a randomized controlled study that compares student conceptual gains in electricity and magnetism between a conceptual inquiry-based lab and a skills-based lab. Following a difference-in-differences analytical strategy and using hierarchical linear modeling, the result from this study is that the conceptual inquiry-based lab pro-vides no additional benefit to students’ conceptual learning gains compared with the skills-based lab. Studies such as these may help physics departments make decisions about the goals and scope of transformations to their introductory lab courses.