{"title":"Optimizing Deep Learning Application for Edge Computing","authors":"S. Niar","doi":"10.1109/EDiS57230.2022.9996494","DOIUrl":null,"url":null,"abstract":"eep learning (DL) models such as convolutional neural networks (CNN) are being deployed to solve various computer vision and natural language processing tasks at the edge. It is a challenge to find the right DL architecture that simultaneously meets the accuracy, power and performance budgets of such resource-constrained devices. Hardware-aware Neural Architecture Search (HW-NAS) has recently gained steam by automating the design of efficient DL models for a variety of target hardware platform.However, such algorithms require excessive computational resources. Thousands of GPU days are required to evaluate and explore modern DL architecture search space. In this talk I will present state-of-the-art approaches that are based on two components: a) Surrogate models to predict quickly architecture accuracy and hardware performances to speed up HW-NAS, b) Efficient search algorithm that explores only promising hardware and software regions of the search space.","PeriodicalId":288133,"journal":{"name":"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDiS57230.2022.9996494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
eep learning (DL) models such as convolutional neural networks (CNN) are being deployed to solve various computer vision and natural language processing tasks at the edge. It is a challenge to find the right DL architecture that simultaneously meets the accuracy, power and performance budgets of such resource-constrained devices. Hardware-aware Neural Architecture Search (HW-NAS) has recently gained steam by automating the design of efficient DL models for a variety of target hardware platform.However, such algorithms require excessive computational resources. Thousands of GPU days are required to evaluate and explore modern DL architecture search space. In this talk I will present state-of-the-art approaches that are based on two components: a) Surrogate models to predict quickly architecture accuracy and hardware performances to speed up HW-NAS, b) Efficient search algorithm that explores only promising hardware and software regions of the search space.