Design of a graphic interface for tongue tissue image processing and classification employing neural networks

I. Cantillo, A. González, Y. Martínez, I. Bueno, C. García, D. Bueno, V. H. Ortiz
{"title":"Design of a graphic interface for tongue tissue image processing and classification employing neural networks","authors":"I. Cantillo, A. González, Y. Martínez, I. Bueno, C. García, D. Bueno, V. H. Ortiz","doi":"10.24254/cnib.18.17","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a graphical interface for detection and classification of different tissue, focusing on tongue soft tissue, based on ADALINE neural networks to provide tools for a highly accurate diagnosis. The interface is capable to identify an affected area or even by exploration of an image of the same sample, to identify normal and pathological conditions. The Adaptive Linear Element (ADALINE) neural network successfully achieved a correct classification of 95% of total study cases, identifying either healthy or abnormal tissue, presented from a set of 70% of images for validations and 30% for training out of the total images.","PeriodicalId":362286,"journal":{"name":"Memorias del Congreso Nacional de Ingeniería Biomédica","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memorias del Congreso Nacional de Ingeniería Biomédica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24254/cnib.18.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we introduce a graphical interface for detection and classification of different tissue, focusing on tongue soft tissue, based on ADALINE neural networks to provide tools for a highly accurate diagnosis. The interface is capable to identify an affected area or even by exploration of an image of the same sample, to identify normal and pathological conditions. The Adaptive Linear Element (ADALINE) neural network successfully achieved a correct classification of 95% of total study cases, identifying either healthy or abnormal tissue, presented from a set of 70% of images for validations and 30% for training out of the total images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的舌组织图像处理与分类图形界面设计
在这项工作中,我们介绍了一个基于ADALINE神经网络的不同组织检测和分类的图形界面,以舌头软组织为重点,为高精度诊断提供了工具。该界面能够识别受影响的区域,甚至通过探索同一样品的图像来识别正常和病理状况。自适应线性元素(ADALINE)神经网络成功地对95%的研究案例进行了正确分类,从70%的图像中进行验证,从总图像中提取30%用于训练,识别出健康或异常组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uso de machine learningcomo apoyo al diagnóstico del complejo Mycobacterium tuberculosis: Una revisión sistemática Construcción y Caracterización Físico-Biológica de un Andamio de Alcohol Poli Vinílico Caracterización mecánica de materiales de lámina delgada usando fuerza centrífuga y microfluídica Instbio: librería de Python para simular circuitos electrónicos de instrumentos biomédicos Diseño e Implementación de un Sistema con Electrogoniometría y Electromiografía para Análisis de Movimiento
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1