Thermal Conductivity Measurement of CVD Diamond Films Using a Modified Thermal Comparator Method

K. R. Cheruparambil, B. Farouk, J. Yehoda, N. Macken
{"title":"Thermal Conductivity Measurement of CVD Diamond Films Using a Modified Thermal Comparator Method","authors":"K. R. Cheruparambil, B. Farouk, J. Yehoda, N. Macken","doi":"10.1115/1.1318206","DOIUrl":null,"url":null,"abstract":"\n Results from an experimental study on the rapid measurement of thermal conductivity of chemical-vapor-deposited (CVD) diamond films are presented. The classical thermal comparator method has been used successfully for the measurement of thermal conductivity of bulk materials having high values of thermal resistance. Using samples of known thermal conductivity, a calibration curve is prepared. With this calibration curve, the comparator can be used to determine thermal conductivity of unknown samples. We have significantly modified and extended this technique for the measurement of materials with very low thermal resistance, i.e., CVD films with high thermal conductivity. In addition to the heated probe, the modified comparator employs a thermo-electric cooling element to increase conductive heat transfer through the film. The thermal conductivity measurements are sensitive to many other factors such as the thermal contact resistances, anisotropic material properties, surrounding air currents and temperature, and ambient humidity. A comprehensive numerical model was also developed to simulate the heat transfer process for the modified comparator. The simulations were used to develop a ‘numerical’ calibration curve that agreed well with the calibration curve obtained from our measurements. The modified method has been found to successfully measure the thermal conductivity of CVD diamond films.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.1318206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Results from an experimental study on the rapid measurement of thermal conductivity of chemical-vapor-deposited (CVD) diamond films are presented. The classical thermal comparator method has been used successfully for the measurement of thermal conductivity of bulk materials having high values of thermal resistance. Using samples of known thermal conductivity, a calibration curve is prepared. With this calibration curve, the comparator can be used to determine thermal conductivity of unknown samples. We have significantly modified and extended this technique for the measurement of materials with very low thermal resistance, i.e., CVD films with high thermal conductivity. In addition to the heated probe, the modified comparator employs a thermo-electric cooling element to increase conductive heat transfer through the film. The thermal conductivity measurements are sensitive to many other factors such as the thermal contact resistances, anisotropic material properties, surrounding air currents and temperature, and ambient humidity. A comprehensive numerical model was also developed to simulate the heat transfer process for the modified comparator. The simulations were used to develop a ‘numerical’ calibration curve that agreed well with the calibration curve obtained from our measurements. The modified method has been found to successfully measure the thermal conductivity of CVD diamond films.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用改进的热比较仪测量CVD金刚石薄膜的热导率
介绍了快速测量化学气相沉积(CVD)金刚石薄膜导热系数的实验研究结果。经典的热比较仪方法已成功地用于测量具有高热阻值的块状材料的导热系数。利用已知热导率的样品,制备了校准曲线。利用该校准曲线,比较器可用于测定未知样品的热导率。我们已经对该技术进行了显著的改进和扩展,用于测量具有非常低热阻的材料,即具有高导热性的CVD膜。除了加热探头外,改进的比较器还采用热电冷却元件来增加通过薄膜的导热传热。热导率测量对许多其他因素很敏感,如热接触电阻、各向异性材料特性、周围气流和温度以及环境湿度。本文还建立了一个综合的数值模型来模拟改进后的比较器的传热过程。模拟被用来开发一个“数值”校准曲线,该曲线与我们从测量中得到的校准曲线很好地吻合。改进后的方法成功地测量了CVD金刚石薄膜的热导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mass Transfer Process of Gaseous Carbon Dioxide Into Water Jet Through Orifice Mixing System A New Facility for Measurements of Three-Dimensional, Local Subcooled Flow Boiling Heat Flux and Related Critical Heat Flux Numerical Solution of Thermal and Fluid Flow With Phase Change by VOF Method Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components Some Aspects of Critical-Heat-Flux Enhancement in Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1