Exact Expressions in Source and Channel Coding Problems Using Integral Representations

N. Merhav, I. Sason
{"title":"Exact Expressions in Source and Channel Coding Problems Using Integral Representations","authors":"N. Merhav, I. Sason","doi":"10.1109/ISIT44484.2020.9174294","DOIUrl":null,"url":null,"abstract":"We explore known integral representations of the logarithmic and power functions, and demonstrate their usefulness for information-theoretic analyses. We obtain compact, easily–computable exact formulas for several source and channel coding problems that involve expectations and higher moments of the logarithm of a positive random variable and the moment of order ρ>0 of a non-negative random variable (or the sum of i.i.d. positive random variables). These integral representations are used in a variety of applications, including the calculation of the degradation in mutual information between the channel input and output as a result of jamming, universal lossless data compression, Shannon and Rényi entropy evaluations, and the ergodic capacity evaluation of the single-input, multiple–output (SIMO) Gaussian channel with random parameters (known to both transmitter and receiver). The integral representation of the logarithmic function and its variants are anticipated to serve as a rigorous alternative to the popular (but non–rigorous) replica method (at least in some situations).","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore known integral representations of the logarithmic and power functions, and demonstrate their usefulness for information-theoretic analyses. We obtain compact, easily–computable exact formulas for several source and channel coding problems that involve expectations and higher moments of the logarithm of a positive random variable and the moment of order ρ>0 of a non-negative random variable (or the sum of i.i.d. positive random variables). These integral representations are used in a variety of applications, including the calculation of the degradation in mutual information between the channel input and output as a result of jamming, universal lossless data compression, Shannon and Rényi entropy evaluations, and the ergodic capacity evaluation of the single-input, multiple–output (SIMO) Gaussian channel with random parameters (known to both transmitter and receiver). The integral representation of the logarithmic function and its variants are anticipated to serve as a rigorous alternative to the popular (but non–rigorous) replica method (at least in some situations).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用积分表示的源和信道编码问题中的精确表达式
我们探索已知的对数函数和幂函数的积分表示,并证明它们对信息论分析的有用性。我们获得了几个源和信道编码问题的紧凑,易于计算的精确公式,这些问题涉及正随机变量的对数的期望和更高矩以及非负随机变量的ρ>0阶矩(或iid个正随机变量的和)。这些积分表示用于各种应用,包括信道输入和输出之间互信息因干扰而退化的计算,通用无损数据压缩,Shannon和rsamunyi熵评估,以及具有随机参数(发射器和接收器都知道)的单输入多输出(SIMO)高斯信道的遍历容量评估。对数函数及其变体的积分表示预计将作为流行的(但不严格的)复制方法的严格替代方法(至少在某些情况下)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Community Detection with Secondary Latent Variables Capacity of Line-of-Sight MIMO Channels On the Randomized Babai Point A Universal Low Complexity Compression Algorithm for Sparse Marked Graphs An Ideal Secret Sharing Scheme Realizing an Access Structure Based on a Finite Projective Plane of Order 3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1