S. R. Garzon, B. Deva, Benoît Hanotte, Axel Küpper
{"title":"CATLES: A Crowdsensing-Supported Interactive World-Scale Environment Simulator for Context-Aware Systems","authors":"S. R. Garzon, B. Deva, Benoît Hanotte, Axel Küpper","doi":"10.1145/2897073.2897078","DOIUrl":null,"url":null,"abstract":"With the rise of smart mobile devices, context-aware mobile applications became an integral part of our everyday life. However, testing, evaluating or demonstrating context-aware mobile applications for outdoor environments remains a resource-intensive and cumbersome task. The investigations need to be conducted in real-world experiments in order to gain proper insights into how well an application will perform in a particular environment with its distinct contextual properties. Although steps were undertaken to simulate outdoor environments within the lab, these approaches are either based on radio propagation models for the simulation of wireless networks or are limited to a particular virtual space. To overcome these shortcomings, the outdoor environment simulator CATLES is introduced. It allows to transparently simulate the position of a mobile device by interactively controlling an avatar within a virtual 3D representation of the world. At the same time, it makes use of crowdsensed publicly available WiFi and cell measurements to properly simulate the environment the context-aware mobile application residing on the respective mobile device is supposed to sense at the simulated position.","PeriodicalId":296509,"journal":{"name":"2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897073.2897078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
With the rise of smart mobile devices, context-aware mobile applications became an integral part of our everyday life. However, testing, evaluating or demonstrating context-aware mobile applications for outdoor environments remains a resource-intensive and cumbersome task. The investigations need to be conducted in real-world experiments in order to gain proper insights into how well an application will perform in a particular environment with its distinct contextual properties. Although steps were undertaken to simulate outdoor environments within the lab, these approaches are either based on radio propagation models for the simulation of wireless networks or are limited to a particular virtual space. To overcome these shortcomings, the outdoor environment simulator CATLES is introduced. It allows to transparently simulate the position of a mobile device by interactively controlling an avatar within a virtual 3D representation of the world. At the same time, it makes use of crowdsensed publicly available WiFi and cell measurements to properly simulate the environment the context-aware mobile application residing on the respective mobile device is supposed to sense at the simulated position.