Traffic Prediction on Communication Network based on Spatial-Temporal Information

Yue Ma, Bo Peng, Mingjun Ma, Yifei Wang, Ding Xiao
{"title":"Traffic Prediction on Communication Network based on Spatial-Temporal Information","authors":"Yue Ma, Bo Peng, Mingjun Ma, Yifei Wang, Ding Xiao","doi":"10.23919/ICACT48636.2020.9061516","DOIUrl":null,"url":null,"abstract":"With the development of the communication and computer science technology, the traffic prediction of the communication network has attracted more and more interests from the scholars, meanwhile, it is also a significant problem in the real world. A good prediction result can monitor the diversification of the traffic volume and give an early alarm of the outlier. A key challenge of the traffic prediction in the communication network is that how to combine the spatial-temporal information together to make full use of the data. In this paper, we get two observations: (1) At the same timestamp, different square has different traffic volume, while at the same square, different timestamp also has different traffic volume. (2) There exists some periodicity in the traffic volume data along time. To address the challenges we mentioned before, we propose a novel Multi-Channel Spatial-Temporal framework (MCST) to model the spatial-temporal information. The three-channel CNN can mine the spatial information and enrich the temporal information, while the LSTM can model the temporal information. MCST can fuse the spatial-temporal information together to achieve the goal of giving a better prediction. Experiments on the public dataset of the communication network in Milan verify the effectiveness of the proposed model.","PeriodicalId":296763,"journal":{"name":"2020 22nd International Conference on Advanced Communication Technology (ICACT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd International Conference on Advanced Communication Technology (ICACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICACT48636.2020.9061516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of the communication and computer science technology, the traffic prediction of the communication network has attracted more and more interests from the scholars, meanwhile, it is also a significant problem in the real world. A good prediction result can monitor the diversification of the traffic volume and give an early alarm of the outlier. A key challenge of the traffic prediction in the communication network is that how to combine the spatial-temporal information together to make full use of the data. In this paper, we get two observations: (1) At the same timestamp, different square has different traffic volume, while at the same square, different timestamp also has different traffic volume. (2) There exists some periodicity in the traffic volume data along time. To address the challenges we mentioned before, we propose a novel Multi-Channel Spatial-Temporal framework (MCST) to model the spatial-temporal information. The three-channel CNN can mine the spatial information and enrich the temporal information, while the LSTM can model the temporal information. MCST can fuse the spatial-temporal information together to achieve the goal of giving a better prediction. Experiments on the public dataset of the communication network in Milan verify the effectiveness of the proposed model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空信息的通信网络流量预测
随着通信技术和计算机科学技术的发展,通信网络的流量预测问题越来越受到学者们的关注,同时也是现实世界中的一个重大问题。良好的预测结果可以监测交通流量的变化,对异常点进行预警。如何将时空信息结合起来,充分利用数据,是通信网流量预测面临的一个关键挑战。本文得到两个观察结果:(1)在同一时间戳,不同广场的交通量不同,而在同一广场,不同时间戳的交通量也不同。(2)随着时间的推移,交通量数据存在一定的周期性。为了解决前面提到的问题,我们提出了一种新的多通道时空框架(MCST)来模拟时空信息。三通道CNN可以挖掘空间信息,丰富时间信息,而LSTM可以对时间信息进行建模。MCST可以将时空信息融合在一起,达到更好预测的目的。在米兰通信网公共数据集上的实验验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classify and Analyze the Security Issues and Challenges in Mobile banking in Uzbekistan 2 to 4 Digital Optical Line Decoder based on Photonic Micro-Ring Resonators Session Overview Analysis and Protection of Computer Network Security Issues Preliminary Study of the Voice-controlled Electric Heat Radiator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1