Multiple RNN Method to Prediction Human Action with Sensor Data

Xiangru Chen, Yue Yu, Fengxia Li
{"title":"Multiple RNN Method to Prediction Human Action with Sensor Data","authors":"Xiangru Chen, Yue Yu, Fengxia Li","doi":"10.1109/ICVRV.2017.00104","DOIUrl":null,"url":null,"abstract":"Human body motion includes the complex spatiotemporal information and human body motion prediction is useful in the human-computer interaction. An Encoder-Multiple-Recurrent-Decoder (EMRD) model to learn human action from sensor data and predict the later ones is proposed in this paper. The kernel of this method is recurrent neural networks (RNN). The model is used to predict the next several frames of a set of sensor data, which is continuous data but is pre-processed by embedding method proposed in this paper. EMRD extends the previous Encoder-Recurrent-Decoder (ERD) models and Long Short Terms Memory (LSTM) model which are used in the video human body movement prediction.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Human body motion includes the complex spatiotemporal information and human body motion prediction is useful in the human-computer interaction. An Encoder-Multiple-Recurrent-Decoder (EMRD) model to learn human action from sensor data and predict the later ones is proposed in this paper. The kernel of this method is recurrent neural networks (RNN). The model is used to predict the next several frames of a set of sensor data, which is continuous data but is pre-processed by embedding method proposed in this paper. EMRD extends the previous Encoder-Recurrent-Decoder (ERD) models and Long Short Terms Memory (LSTM) model which are used in the video human body movement prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用传感器数据预测人体动作的多重RNN方法
人体运动包含了复杂的时空信息,人体运动预测在人机交互中具有重要意义。提出了一种从传感器数据中学习人体动作并预测后续动作的编码器-多循环-解码器(EMRD)模型。该方法的核心是递归神经网络(RNN)。该模型用于预测一组连续传感器数据的下几帧,该数据采用本文提出的嵌入方法进行预处理。EMRD扩展了先前用于视频人体运动预测的编码器-递归-解码器(ERD)模型和长短期记忆(LSTM)模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature-Enhanced Surfaces from Incomplete Point Cloud with Segmentation and Curve Skeleton Information Efficiently Disassemble-and-Pack for Mechanism Surface Flattening Based on Energy Fabric Deformation Model in Garment Design A Novel Intelligent Thyroid Nodule Diagnosis System over Ultrasound Images Based on Deep Learning A Novel Reconstruction Method of 3D Heart Geometry Atlas Based on Visible Human
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1