Measurement Dependent Noisy Search with Stochastic Coefficients

N. Ronquillo, T. Javidi
{"title":"Measurement Dependent Noisy Search with Stochastic Coefficients","authors":"N. Ronquillo, T. Javidi","doi":"10.1109/ISIT44484.2020.9174019","DOIUrl":null,"url":null,"abstract":"Consider the problem of recovering an unknown sparse unit vector via a sequence of linear observations with stochastic magnitude and additive noise. An agent sequentially selects measurement vectors and collects observations subject to noise affected by the measurement vector. We propose two algorithms of varying computational complexity for sequentially and adaptively designing measurement vectors. The proposed algorithms aim to augment the learning of the unit common support vector with an estimate of the stochastic coefficient. Numerically, we study the probability of error in estimating the support achieved by our proposed algorithms and demonstrate improvements over random-coding based strategies utilized in prior works.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the problem of recovering an unknown sparse unit vector via a sequence of linear observations with stochastic magnitude and additive noise. An agent sequentially selects measurement vectors and collects observations subject to noise affected by the measurement vector. We propose two algorithms of varying computational complexity for sequentially and adaptively designing measurement vectors. The proposed algorithms aim to augment the learning of the unit common support vector with an estimate of the stochastic coefficient. Numerically, we study the probability of error in estimating the support achieved by our proposed algorithms and demonstrate improvements over random-coding based strategies utilized in prior works.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机系数测量相关噪声搜索
考虑通过随机幅度和加性噪声的线性观测序列恢复未知稀疏单位向量的问题。智能体依次选择测量向量并收集受测量向量影响的噪声观测值。我们提出了两种不同计算复杂度的算法,用于顺序和自适应设计测量向量。提出的算法旨在通过估计随机系数来增强单位公共支持向量的学习。在数值上,我们研究了我们提出的算法在估计支持度时的误差概率,并演示了对先前工作中使用的基于随机编码的策略的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Community Detection with Secondary Latent Variables Capacity of Line-of-Sight MIMO Channels On the Randomized Babai Point A Universal Low Complexity Compression Algorithm for Sparse Marked Graphs An Ideal Secret Sharing Scheme Realizing an Access Structure Based on a Finite Projective Plane of Order 3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1