Convergence Analysis of Cloud-Aided Federated Edge Learning on Non-IID Data

Sai Wang, Yi Gong
{"title":"Convergence Analysis of Cloud-Aided Federated Edge Learning on Non-IID Data","authors":"Sai Wang, Yi Gong","doi":"10.1109/spawc51304.2022.9833971","DOIUrl":null,"url":null,"abstract":"Federated edge learning has attracted great attention for edge intelligent networks. Due to the limited computation and energy, mobile devices usually need to offload data to nearby edge servers. Facing this scenario, we design a cloud-aided federated edge learning (CA-FEEL) framework where the edges cooperate with the cloud to train a federated learning model. Specifically, the edges adopt the gradient descent (GD) method in parallel to update the edge parameters and the cloud averages them to update the global parameter. By theoretical analysis, we find that the covariance of non-independent and identically distributed (non-IID) data sets hinders the convergence of the GD based FL. Thus, we propose a CA-FEEL algorithm by adding a simple judgment condition. It is proved to have a theoretical guarantee of convergence for convex and smooth problems. Experiment results indicate that the proposed algorithm outperforms the standard federated learning in terms of the convergence rate and accuracy.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9833971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated edge learning has attracted great attention for edge intelligent networks. Due to the limited computation and energy, mobile devices usually need to offload data to nearby edge servers. Facing this scenario, we design a cloud-aided federated edge learning (CA-FEEL) framework where the edges cooperate with the cloud to train a federated learning model. Specifically, the edges adopt the gradient descent (GD) method in parallel to update the edge parameters and the cloud averages them to update the global parameter. By theoretical analysis, we find that the covariance of non-independent and identically distributed (non-IID) data sets hinders the convergence of the GD based FL. Thus, we propose a CA-FEEL algorithm by adding a simple judgment condition. It is proved to have a theoretical guarantee of convergence for convex and smooth problems. Experiment results indicate that the proposed algorithm outperforms the standard federated learning in terms of the convergence rate and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非iid数据上云辅助联邦边缘学习的收敛性分析
联邦边缘学习已成为边缘智能网络研究的热点。由于计算和能量有限,移动设备通常需要将数据卸载到附近的边缘服务器。面对这种情况,我们设计了一个云辅助的联邦边缘学习(CA-FEEL)框架,其中边缘与云合作来训练联邦学习模型。其中,边缘采用并行梯度下降(GD)法更新边缘参数,云平均边缘参数更新全局参数。通过理论分析,我们发现非独立同分布(non-IID)数据集的协方差阻碍了基于GD的FL的收敛,因此我们提出了一种CA-FEEL算法,并增加了一个简单的判断条件。证明了该方法对凸光滑问题具有收敛性的理论保证。实验结果表明,该算法在收敛速度和准确率方面都优于标准联邦学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1