Improving evolutionary algorithm performance on maximizing functional test coverage of ASICs using adaptation of the fitness criteria

Burcin Aktan, G. Greenwood, M. Shor
{"title":"Improving evolutionary algorithm performance on maximizing functional test coverage of ASICs using adaptation of the fitness criteria","authors":"Burcin Aktan, G. Greenwood, M. Shor","doi":"10.1109/CEC.2002.1004520","DOIUrl":null,"url":null,"abstract":"Adaptation of the fitness criteria can be a very powerful tool, enhancing the feedback scheme employed in standard evolutionary algorithms. When the problem the evolutionary algorithm (EA) is trying to solve is changing over time, the fitness criteria need to change to adapt to the new problem. Significant performance improvements are possible with feedback based adaptation schemes. This work outlines the results of an adaptation scheme applied to maximization of the functional test coverage problem.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1004520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Adaptation of the fitness criteria can be a very powerful tool, enhancing the feedback scheme employed in standard evolutionary algorithms. When the problem the evolutionary algorithm (EA) is trying to solve is changing over time, the fitness criteria need to change to adapt to the new problem. Significant performance improvements are possible with feedback based adaptation schemes. This work outlines the results of an adaptation scheme applied to maximization of the functional test coverage problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于适应度准则的asic功能测试覆盖最大化进化算法性能改进
适应度准则的自适应可以是一个非常强大的工具,增强了标准进化算法中采用的反馈方案。当进化算法(EA)试图解决的问题随时间而变化时,适应度准则需要改变以适应新的问题。基于反馈的适应方案可以显著提高性能。这项工作概述了应用于最大化功能测试覆盖问题的适应性方案的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of FPGA based adaptive image enhancement filter system using genetic algorithms Intelligent predictive control of a power plant with evolutionary programming optimizer and neuro-fuzzy identifier Blocked stochastic sampling versus Estimation of Distribution Algorithms Distinguishing adaptive from non-adaptive evolution using Ashby's law of requisite variety An artificial immune network for multimodal function optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1