Simulation of an Offshore Wind Turbine Using a Weakly-Compressible CFD Solver Coupled With a Blade Element Turbine Model

B. Elie, G. Oger, D. L. Touzé
{"title":"Simulation of an Offshore Wind Turbine Using a Weakly-Compressible CFD Solver Coupled With a Blade Element Turbine Model","authors":"B. Elie, G. Oger, D. L. Touzé","doi":"10.1115/iowtc2019-7600","DOIUrl":null,"url":null,"abstract":"\n The present study addresses the first steps of development and validation of a coupled CFD-BE (Blade Element) simulation tool dedicated to offshore wind turbine farm modelling. The CFD part is performed using a weakly-compressible solver (WCCH). The turbine is taken into account using FAST (from NREL) and its effects are imposed into the fluid domain through an actuator line model. The first part of this paper is dedicated to the presentation of the WCCH solver and its coupling with the aero-elastic modules from FAST. In a second part, for validation purposes, comparisons between FAST and the WCCH-FAST coupling are presented and discussed. Finally, a discussion on the performances, advantages and limitations of the formulation proposed is provided.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study addresses the first steps of development and validation of a coupled CFD-BE (Blade Element) simulation tool dedicated to offshore wind turbine farm modelling. The CFD part is performed using a weakly-compressible solver (WCCH). The turbine is taken into account using FAST (from NREL) and its effects are imposed into the fluid domain through an actuator line model. The first part of this paper is dedicated to the presentation of the WCCH solver and its coupling with the aero-elastic modules from FAST. In a second part, for validation purposes, comparisons between FAST and the WCCH-FAST coupling are presented and discussed. Finally, a discussion on the performances, advantages and limitations of the formulation proposed is provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于弱可压缩CFD求解器与叶片单元涡轮模型耦合的海上风力机仿真
本研究解决了用于海上风力涡轮机建模的耦合CFD-BE(叶片元件)仿真工具的开发和验证的第一步。CFD部分使用弱可压缩求解器(WCCH)执行。使用FAST(来自NREL)考虑涡轮,并通过执行器线模型将其影响施加到流体域。本文第一部分介绍了WCCH求解器及其与FAST气动弹性模块的耦合。在第二部分,为了验证的目的,提出并讨论了FAST和WCCH-FAST耦合之间的比较。最后,对所提出的配方的性能、优点和局限性进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low Specific Mass, Free Floating Wind Energy Concept up to 40 MW Effect of Nacelle Drag on the Performance of a Floating Wind Turbine Platform Assessing the Impact of Integrating Energy Storage on the Dynamic Response of a Spar-Type Floating Wind Turbine Lifting Line Free Wake Vortex Filament Method for the Evaluation of Floating Offshore Wind Turbines: First Step — Validation for Fixed Wind Turbines Substructure Flexibility and Member-Level Load Capabilities for Floating Offshore Wind Turbines in OpenFAST
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1