Efficient and proactive V2V information diffusion using Named Data Networking

Yang Wang, Hengchang Liu, Liusheng Huang, J. Stankovic
{"title":"Efficient and proactive V2V information diffusion using Named Data Networking","authors":"Yang Wang, Hengchang Liu, Liusheng Huang, J. Stankovic","doi":"10.1109/IWQoS.2016.7590391","DOIUrl":null,"url":null,"abstract":"Due to high mobility and intermittent connections in vehicular networks, reliable and efficient Vehicle-to-Vehicle (V2V) communication is a challenging task. The Named Data Networking (NDN) paradigm is recently being applied to achieve efficient V2V communication, however, proactive V2V information diffusion conflicts with the receiver-initiated nature of NDN. This paper bridges this gap by exploiting hierarchical data names to achieve efficient and proactive V2V information diffusion. We first identify a popular subgroup of vehicles, then select them as the diffusion seeds with 3G/4G capability, while others are only equipped with short-range V2V communication. We also design a namespace-based method to optimize data transmission when vehicles are close, in order to maximize the information distribution across geographical space. We evaluate our solution via a real-world taxicab dataset. Experimental results demonstrate that our approach significantly outperforms state-of-the-art solutions in terms of diffusion speed and success rate of data retrieval.","PeriodicalId":304978,"journal":{"name":"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS.2016.7590391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Due to high mobility and intermittent connections in vehicular networks, reliable and efficient Vehicle-to-Vehicle (V2V) communication is a challenging task. The Named Data Networking (NDN) paradigm is recently being applied to achieve efficient V2V communication, however, proactive V2V information diffusion conflicts with the receiver-initiated nature of NDN. This paper bridges this gap by exploiting hierarchical data names to achieve efficient and proactive V2V information diffusion. We first identify a popular subgroup of vehicles, then select them as the diffusion seeds with 3G/4G capability, while others are only equipped with short-range V2V communication. We also design a namespace-based method to optimize data transmission when vehicles are close, in order to maximize the information distribution across geographical space. We evaluate our solution via a real-world taxicab dataset. Experimental results demonstrate that our approach significantly outperforms state-of-the-art solutions in terms of diffusion speed and success rate of data retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用命名数据网络的高效和主动的V2V信息扩散
由于车辆网络的高移动性和间歇性连接,可靠和高效的车对车(V2V)通信是一项具有挑战性的任务。命名数据网络(NDN)范式最近被应用于实现高效的V2V通信,然而,主动的V2V信息扩散与NDN的接收方发起的性质相冲突。本文通过利用分层数据名称来实现有效和主动的V2V信息扩散,弥合了这一差距。我们首先确定一个受欢迎的车辆子组,然后选择它们作为具有3G/4G能力的扩散种子,而其他车辆只配备短距离V2V通信。我们还设计了一种基于命名空间的方法来优化车辆靠近时的数据传输,以最大限度地实现跨地理空间的信息分布。我们通过一个真实的出租车数据集来评估我们的解决方案。实验结果表明,我们的方法在数据检索的扩散速度和成功率方面明显优于最先进的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MSRT: Multi-Source Request and Transmission in Content-Centric Networks Tube caching: An effective caching scheme in Content-Centric Networking DVMP: Incremental traffic-aware VM placement on heterogeneous servers in data centers Adaptive rate control over mobile data networks with heuristic rate compensations Selecting most informative contributors with unknown costs for budgeted crowdsensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1