Self-vibrations of a truncated conical sandwich shell with a honeycomb core made by additive technologies

K. Avramov, B. Uspensky
{"title":"Self-vibrations of a truncated conical sandwich shell with a honeycomb core made by additive technologies","authors":"K. Avramov, B. Uspensky","doi":"10.15407/itm2022.02.087","DOIUrl":null,"url":null,"abstract":"This paper presents a nonlinear mathematical model of self-vibrations of conical sandwich shells with a honeycomb core made by additive technologies. The vibrations of the structure are described by fifteen unknowns. Each layer of the structure is described by five unknowns: three projections of the displacements of the layer middle surface and two rotation angles of the middle surface normal. Displacement continuity conditions at the layer interfaces are used. The higher-order shear theory is used to describe the stress-strain state of the structure. The case of conical sandwich shell ? supersonic gas flow interaction is considered. Due to this interaction, self-vibrations of the shell structure are set up. In their analysis, the geometrical nonlinearity of the structure is accounted for. Motion equations of the structure are derived using the assumed-mode method, which uses the kinetic and the potential energy of the structure. The self-vibrations are represented as eigenmode expansions, which contain a set of generalized coordinates. A system of nonlinear autonomous ordinary differential equations in the generalized coordinates is derived. The self-vibrations are studied using a combination of the shooting technique and the parameter continuation method. Multipliers are calculated to analyze the stability of periodic vibrations and their bifurcations. The dynamic instability of the structure’s trivial equilibrium is studied by numerical simulation. For clamped-clamped and cantilever shells, the properties of their periodic, quasiperiodic, and chaotic motions are analyzed in detail.","PeriodicalId":287730,"journal":{"name":"Technical mechanics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/itm2022.02.087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a nonlinear mathematical model of self-vibrations of conical sandwich shells with a honeycomb core made by additive technologies. The vibrations of the structure are described by fifteen unknowns. Each layer of the structure is described by five unknowns: three projections of the displacements of the layer middle surface and two rotation angles of the middle surface normal. Displacement continuity conditions at the layer interfaces are used. The higher-order shear theory is used to describe the stress-strain state of the structure. The case of conical sandwich shell ? supersonic gas flow interaction is considered. Due to this interaction, self-vibrations of the shell structure are set up. In their analysis, the geometrical nonlinearity of the structure is accounted for. Motion equations of the structure are derived using the assumed-mode method, which uses the kinetic and the potential energy of the structure. The self-vibrations are represented as eigenmode expansions, which contain a set of generalized coordinates. A system of nonlinear autonomous ordinary differential equations in the generalized coordinates is derived. The self-vibrations are studied using a combination of the shooting technique and the parameter continuation method. Multipliers are calculated to analyze the stability of periodic vibrations and their bifurcations. The dynamic instability of the structure’s trivial equilibrium is studied by numerical simulation. For clamped-clamped and cantilever shells, the properties of their periodic, quasiperiodic, and chaotic motions are analyzed in detail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用增材制造的蜂窝芯截锥形夹层壳的自振动
本文建立了用增材制造技术制造的蜂窝芯锥形夹层壳自振动的非线性数学模型。结构的振动由15个未知量来描述。结构的每一层用五个未知数来描述:层中间表面位移的三个投影和中间表面法线的两个旋转角度。采用层间界面位移连续条件。采用高阶剪切理论描述结构的应力-应变状态。锥形夹层壳的情况?考虑了超声速气流相互作用。由于这种相互作用,建立了壳结构的自振动。在他们的分析中,考虑了结构的几何非线性。利用结构的动能和势能,采用假设模态法推导了结构的运动方程。自振动被表示为包含一组广义坐标的特征模态展开式。导出了广义坐标系下的非线性自治常微分方程组。采用射击技术和参数延拓法相结合的方法研究了自振动。计算乘法器来分析周期振动及其分岔的稳定性。采用数值模拟方法研究了结构平凡平衡的动力失稳问题。对于夹-夹壳和悬臂壳,详细分析了其周期、准周期和混沌运动的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining the coefficients of a hydrodynamic model of cavitating pumps of liquid-propellant rocket engines from their theoretical transfer matrices Methodological features of in-group evaluation of experts’ competence in determining the efficiency of space-rocket complexes Finite-element model of a vertical tank on a rigid foundation Mathematical model for selecting the auxiliary equipment parameters of aerodynamic deorbit systems Deployment of a space tether in a centrifugal force field with alignment to the local vertical
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1