Investigation of FlexAlgo for User-driven Path Control

Julia Kułacz, Martyna Pawlus, Leonardo Boldrini, P. Grosso
{"title":"Investigation of FlexAlgo for User-driven Path Control","authors":"Julia Kułacz, Martyna Pawlus, Leonardo Boldrini, P. Grosso","doi":"10.1109/NetSoft57336.2023.10175487","DOIUrl":null,"url":null,"abstract":"This paper examines the Flexible Algorithm (FlexAlgo) for its potential to enable user-driven path control in intra-domain Segment Routing (SR) enabled networks. FlexAlgo is a relatively new approach to intra-domain routing that allows multiple custom algorithms to coexist within a single domain. This capability has the potential to provide users with greater control over the paths their data takes through a network. The research includes a thorough investigation of the FlexAlgo approach, including an examination of its underlying techniques, as well as a practical implementation of a FlexAlgo-based solution. We depict performed experiments where we implemented FlexAlgo in three different scenarios. We also present how we developed an automated tool for users to control traffic steering using preferred metrics and constraints. The results of this investigation demonstrate the capabilities of FlexAlgo as a means of enabling user-driven path control and therefore increase security and trust of users towards the network.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines the Flexible Algorithm (FlexAlgo) for its potential to enable user-driven path control in intra-domain Segment Routing (SR) enabled networks. FlexAlgo is a relatively new approach to intra-domain routing that allows multiple custom algorithms to coexist within a single domain. This capability has the potential to provide users with greater control over the paths their data takes through a network. The research includes a thorough investigation of the FlexAlgo approach, including an examination of its underlying techniques, as well as a practical implementation of a FlexAlgo-based solution. We depict performed experiments where we implemented FlexAlgo in three different scenarios. We also present how we developed an automated tool for users to control traffic steering using preferred metrics and constraints. The results of this investigation demonstrate the capabilities of FlexAlgo as a means of enabling user-driven path control and therefore increase security and trust of users towards the network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FlexAlgo在用户驱动路径控制中的研究
本文研究了灵活算法(FlexAlgo)在域内段路由(SR)启用网络中实现用户驱动路径控制的潜力。FlexAlgo是一种相对较新的域内路由方法,它允许多个自定义算法在单个域中共存。这种功能有可能为用户提供对其数据通过网络的路径的更大控制。该研究包括对FlexAlgo方法的彻底调查,包括对其底层技术的检查,以及基于FlexAlgo的解决方案的实际实施。我们描述了在三种不同的场景中实现FlexAlgo的实验。我们还介绍了我们如何为用户开发一个自动化工具,使用首选指标和约束来控制流量转向。这项调查的结果证明了FlexAlgo作为一种实现用户驱动路径控制的手段的能力,从而提高了用户对网络的安全性和信任度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Network Management in Multi-Domain 6G Networks based on Graph Neural Networks Showcasing In-Switch Machine Learning Inference Latency-Aware Kubernetes Scheduling for Microservices Orchestration at the Edge DRL-based Service Migration for MEC Cloud-Native 5G and beyond Networks Hierarchical Control Plane Framework for Multi-Domain TSN Orchestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1