Identifying and Querying Regularly Visited Places

A. Rudi
{"title":"Identifying and Querying Regularly Visited Places","authors":"A. Rudi","doi":"10.7561/sacs.2019.2.185","DOIUrl":null,"url":null,"abstract":"A stay point of a moving entity is a region in which it spends a significant amount of time. In this paper, we identify all stay points of an entity in a certain time interval, where the entity is allowed to leave the region but it should return within a given time limit. This definition of stay points seems more natural in many applications of trajectory analysis than those that do not limit the time of entity’s absence from the region. We present an O(n log n) algorithm for trajectories in R with n vertices and a (1 + )-approximation algorithm for trajectories in R to identify all such stay points. Our algorithm runs in O(kn), where k depends on and the ratio of the duration of the trajectory to the allowed gap time. We also present an algorithm to answer stay point queries in logarithmic time, after an O(kn log n) time preprocessing.","PeriodicalId":394919,"journal":{"name":"Sci. Ann. Comput. Sci.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Ann. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7561/sacs.2019.2.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A stay point of a moving entity is a region in which it spends a significant amount of time. In this paper, we identify all stay points of an entity in a certain time interval, where the entity is allowed to leave the region but it should return within a given time limit. This definition of stay points seems more natural in many applications of trajectory analysis than those that do not limit the time of entity’s absence from the region. We present an O(n log n) algorithm for trajectories in R with n vertices and a (1 + )-approximation algorithm for trajectories in R to identify all such stay points. Our algorithm runs in O(kn), where k depends on and the ratio of the duration of the trajectory to the allowed gap time. We also present an algorithm to answer stay point queries in logarithmic time, after an O(kn log n) time preprocessing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别和查询经常访问的地方
移动实体的停留点是它在其中花费大量时间的区域。在本文中,我们确定了一个实体在一定时间间隔内的所有停留点,允许实体离开该区域,但必须在给定的时间限制内返回。在轨迹分析的许多应用中,这种停留点的定义似乎比那些不限制实体离开区域时间的定义更自然。我们提出了一种O(n log n)算法来识别R中有n个顶点的轨迹,并提出了一种(1 +)-近似算法来识别R中所有这样的停留点。我们的算法运行时间为0 (kn),其中k取决于轨迹持续时间与允许间隙时间的比值。我们还提出了一种算法,在O(kn log n)时间预处理后,在对数时间内回答停留点查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Describing weighted safety with weighted LTL over product omega-valuation monoids On Nirmala Indices of Some Hex-derived Networks of Type Three and Their Subdivision Networks Shrinkage Estimators for the Intercept in Linear and Uplift Regression A Teacher of Great Strengths Maximal Existential and Universal Width
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1