Distributed estimation over sensor networks based on distributed conjugate gradient strategies

Songcen Xu, R. D. Lamare, H. Poor
{"title":"Distributed estimation over sensor networks based on distributed conjugate gradient strategies","authors":"Songcen Xu, R. D. Lamare, H. Poor","doi":"10.1049/iet-spr.2015.0384","DOIUrl":null,"url":null,"abstract":"This study presents distributed conjugate gradient (CG) algorithms for distributed parameter estimation and spectrum estimation over wireless sensor networks. In particular, distributed conventional CG (CCG) and modified CG (MCG) algorithms are developed with incremental and diffusion adaptive cooperation strategies. The distributed CCG and MCG algorithms have an improved performance in terms of mean square error as compared with least-mean square-based algorithms and a performance that is close to recursive least-squares algorithms. In comparison with existing centralised or distributed estimation strategies, key features of the proposed algorithms are: (i) more accurate estimates and faster convergence speed can be obtained and (ii) the design of preconditioners for CG algorithms, which can improve the performance of the proposed CG algorithms is presented. Simulations show the performance of the proposed CG algorithms against previously reported techniques for distributed parameter estimation and distributed spectrum estimation applications.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"23 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2015.0384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

This study presents distributed conjugate gradient (CG) algorithms for distributed parameter estimation and spectrum estimation over wireless sensor networks. In particular, distributed conventional CG (CCG) and modified CG (MCG) algorithms are developed with incremental and diffusion adaptive cooperation strategies. The distributed CCG and MCG algorithms have an improved performance in terms of mean square error as compared with least-mean square-based algorithms and a performance that is close to recursive least-squares algorithms. In comparison with existing centralised or distributed estimation strategies, key features of the proposed algorithms are: (i) more accurate estimates and faster convergence speed can be obtained and (ii) the design of preconditioners for CG algorithms, which can improve the performance of the proposed CG algorithms is presented. Simulations show the performance of the proposed CG algorithms against previously reported techniques for distributed parameter estimation and distributed spectrum estimation applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分布共轭梯度策略的传感器网络分布估计
本研究提出了一种用于无线传感器网络分布参数估计和频谱估计的分布式共轭梯度(CG)算法。特别是,采用增量和扩散自适应合作策略,开发了分布式传统CG (CCG)和改进CG (MCG)算法。与基于最小均方的算法相比,分布式CCG和MCG算法在均方误差方面具有改进的性能,并且性能接近于递归最小二乘算法。与现有的集中式或分布式估计策略相比,本文提出的算法的主要特点是:(i)可以获得更准确的估计和更快的收敛速度;(ii)提出了CG算法的预处理设计,可以提高所提出的CG算法的性能。仿真结果表明,所提出的CG算法与先前报道的分布式参数估计和分布式频谱估计应用技术相比具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An order insensitive optimal generalised sequential fusion estimation for stochastic uncertain multi-sensor systems with correlated noise Spatial Multiplexing in Near Field MIMO Channels with Reconfigurable Intelligent Surfaces An improved segmentation technique for multilevel thresholding of crop image using cuckoo search algorithm based on recursive minimum cross entropy Advances in image processing using machine learning techniques An unsupervised monocular image depth prediction algorithm using Fourier domain analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1